TRAI RASHIQ BARGIA SUTRA AND RANA'S CONSTANT Author ${ }^{1:}$ MOHAMMAD MAKBUL HOSSAIN (RANA)
 ${ }^{1}$ Department: COURSE TEACHER: APPAREL TECHNOLOGY, PROFESSIONAL INSTITUTE OF SCIENCE AND FASHION TECHNOLOGY (NU), UTTARA, DHAKA, BANGLADESH
 ${ }^{2}$ Department: As a student of MIT, INSTITUTE OF INFORMATION TECHNOLOGY, JAHANGIRNAGAR UNVERSITY, SAVAR, DHAKA, BANGLADESH

Abstract : Like as,

1. Polidromik Number: (111, 222, 121, 525 its value same as from left to right starting number setup)
2. Horzat Number: (the number is divided by the sum of groups all number in, like in 12 sums (1+2) 3 is the Hozrat number of 12.)
3. Demloa Number: $\left(214423,21+23=44\right.$ that of the sum $1^{\text {st }}+$ last number $\left.=m i d d l e ~ n u m b e r\right)$
4. UD Number : (ups and down number like 6, 9, 81, 18)
5. Kaprekar Constant: (the professor kaprekar in 1946 inventing the constant number 6174)
6. Kaprekar number: $(2025$, cut in middle and ad $20+25=45$ square then same previous number 2025)

In this Connection,
Axioms defined Mohammad Makbul Hossain Rana using sequential, odd and even numbers, "TRAI RASHIQ BARGIA SUTRA \& RANA'S CONSTANT", is a new invention and it is an extra ordinary and in-depth development in mathematics. His profound achievements in special types of Number Theory. In this theory, he establishes a particular relation between three consecutive integer/ odd/even numbers which is called "Rana's Trai Rashiq bargio sutra \& Constant as odd and even 8 and integer 2 up to nth term.

Keywords :-

Abstract

I. INTRODUCTION

Rana's Trai Rashiq bargio sutra \& Constant, as odd and even " $R=8$ " and interger"' $R=2$ " up to nth term. Provided extraordinarily deep theorems that laid the foundation for the complete classification of finite simple numbers, one of the greatest achievements of twentieth century in mathematics like, professor Kaprekar constant. Simple numbers are atoms from which all finite numbers are built have a common relation. In a major breakthrough, proved that every number (integer/even/odd) have a common number of elements. Later extended this result to establish a common constant of an important kind of finite simple number called an " $R=2$ " for integer $\& R=8$, for odd /even number. At this point, the classification project came within incredible conclusion that all finite simple number belongs to certain standard families. Indepth and influential. His complements each other's and together forms the backbone of modern number theory.

II. Heading S

Name of theory: Trai Rashiq Bargia Sutra and Rana's Constant
"Par par tinty aungker Barger auntor dhoer auntor akti dhrobo sonkha."
 msL " $\mathbf{w l}=2$]

i Jbvi aqk $=2,8$ Rana's dhrobok Integer number $=2$, Even/odd (zore/bizore) number $=8$

III. INDENTATIONS AND EQUATIONS

Theses/theory:
1.1. Name of theory: Trai Rashiq Bargia Sutra and Rana's Constant.

1.1.1 Basic: Number theory.

1.1.2. Definition/sutra: Par par tinty aungker Barger auntor dhoer auntor akti dhrobo sonkha.
 $m s L " v, m s L " w d=2]$

1.1.5. i Vbvi az $K=2$, Rana's dhrobok Integer number $=2$, Even/odd (zore/bizore) number = 8
1.1.6. Constant: integer number " $R=2$ ", Even/odd number " $R=8$ "

Proof this theory and constant " $\mathrm{R}=2$ "/ " 8 ":

1.1.7.

1.2.1. As 1, 2, 3 are three integer number

Proof:
$1^{2}=1$

$$
]=3
$$

$\left.2^{2}=4 \quad\right]=2$ [The Rana's constant for integer Number up to n term]
$]=5$
$3^{2}=9$
2.3. As 1, 3, 5 are three odd number

$$
1^{2}=1
$$

$\left.3^{2}=9 \quad\right]=8$ [The Rana's constant for ODD Numb up to n term]

$$
\text {] = } 16
$$

$5^{2}=25$
1.2.2. As $2,4,6$ are three even number
$2^{2}=4$

$$
]=12
$$

$\left.4^{2}=16 \quad\right]=8$ [The Rana's constant for EVEN Numb up to n term] $]=20$
$6^{2}=36$
1.2.3. Example: let Three number are (a-1), a, (a+1)

According to Rana's Trai Rashiq Bargia Sutra
Proof:
When, $a=1,2,3 \ldots n$ [integer number]
$\left\{(a+1)^{2}-a^{2}\right\}-\left\{a^{2}-(a-1)\right\}^{2}$
$=\left\{a^{2}+2 \cdot a \cdot 1+1-a^{2}\right\}-\left\{a^{2}-a^{2}+2 \cdot a \cdot 1-1^{2}\right\}$
$=\{2 . \mathrm{a} .1+1\}-\{2 . \mathrm{a} .1-1\}$
$=\{2 . \mathrm{a} .1+1-2 . \mathrm{a} .1+1\}$
$=\{1+1\}$
$=2$
This the Rana's Constant " $R=2$ " or " R "
1.2.4. Example: let Three number are a, (a+2), (a+4)

According to Rana's Trai Rashiq Bargia Sutra
Proof:
a, $(a+2),(a+4)$
When $a=2,4,6 n$ [EVEN Number]
$\begin{array}{ll}\left\{\mathbf{a}^{2}-(\mathbf{a}+2)^{2}\right\}-\left\{(\mathbf{a}+2)^{2}-(\mathbf{a}+4)^{2}\right\} & {\left[\left\{\mathbf{2}^{2}-(\mathbf{2}+2)^{2}\right\}-\left\{(2+2)^{2}-(2+4)^{2}\right\}=8 \text { when } \mathbf{a}=2\right]} \\ & {\left[\left\{4^{2}-(\mathbf{4}+2)^{2}\right\}-\left\{(4+2)^{2}-(\mathbf{4}+4)^{2}\right\}=8 \text { when } \mathbf{a}=4\right]} \\ & \left.\left\{6^{2}-(6+2)^{2}\right\}-\left\{(\mathbf{6}+2)^{2}-(6+4)^{2}\right\}=8 \text { when } a=6\right]\end{array}$
$=\left\{a^{2}-a^{2}-2 \cdot a \cdot 2-4\right\}-\left\{a^{2}+2 \cdot a \cdot 2+4-\left(a^{2}+2 \cdot a \cdot 4+16\right)\right\}$
$=\{-2 . a \cdot 2-4\}-\left\{a^{2}+2 \cdot a \cdot 2+4-a^{2}-2 \cdot a \cdot 4-16\right\}$
$=\{-4 . \mathrm{a}-4\}-\{2 . \mathrm{a} .2+4-2 . \mathrm{a} .4-16\}$
$=\{-4 . a-4-4 . a-4+8 . a+16\}$
$=\{-4 . a-4-4 . a-4+8 . a+16\}$
$=\{-8+16\}$
$=8$
This the Rana's Constant " $\mathrm{R}=8$ " or " R "
1.2.5. Example: let Three number are a, (a+2), (a+4)

According to Rana's Trai Rashiq Bargia Sutra
Proof:
a , $(a+2),(a+4)$
When, $a=1,3,5 \ldots \ldots \ldots . . n$ [ODD number]

$$
\begin{aligned}
& \left\{\mathrm{a}^{2}-(\mathrm{a}+2)^{2}\right\}-\left\{(\mathrm{a}+2)^{2}-(\mathrm{a}+4)^{2}\right\} \quad\left[\left\{\mathbf{1}^{2}-(1+2)^{2}\right\}-\left\{(1+2)^{2}-(1+4)^{2}\right\}=8 \text { when } \mathrm{a}=1\right] \\
& {\left[\left\{3^{2}-(3+2)^{2}\right\}-\left\{(3+2)^{2}-(3+4)^{2}\right\}=8 \text { when } a=3\right]} \\
& {\left[\left\{5^{2}-(5+2)^{2}\right\}-\left\{(5+2)^{2}-(5+4)^{2}\right\}=8 \text { when } \mathrm{a}=5\right]} \\
& =\left\{\mathrm{a}^{2}-\mathrm{a}^{2}-2 \cdot \mathrm{a} \cdot 2-4\right\}-\left\{\mathrm{a}^{2}+2 \cdot \mathrm{a} \cdot 2+4-\left(\mathrm{a}^{2}+2 \cdot \mathrm{a} \cdot 4+16\right)\right\} \\
& =\{-2 \cdot a \cdot 2-4\}-\left\{a^{2}+2 \cdot a \cdot 2+4-a^{2}-2 \cdot a \cdot 4-16\right\} \\
& =\{-4 . a-4\}-\{4 . a+4-8 . a-16\} \\
& =\{-4 . a-4-4 . a-4+8 . a+16\} \\
& =\{-4 . a-4-4 . a-4+8 . a+16\} \\
& =\{-8+16\} \\
& =\{-8+16\} \\
& \text { =8 } \\
& \text { This the Rana's Constant " } 8 \text { " or " } R \text { " }
\end{aligned}
$$

IV．Figures and Tables
2．1．Definition：Par par tinty aungker barger antor dhoer auntor akti dhrobo sonkha．

Exercise：－ 1

（Numerical Problems）
2．1．1）Sum of any three integers square value as 35 and multiple value of 1 st \＆ 3rd number as 5 and Rana＇s constant＂ 8 ＂，proof Rana＇s theory and determine the value of three numbers．

```
th †K vo vz bv| \mu vg K msL"vi e\ddagger國 mgvó 35 Ges 1g l
```



```
vb⿴囗口 Ki |
```

2．1．2）Determine the value of three numbers that the Rana＇s constant as＂ 8 ＂ and sum of square is $\mathbf{5 6}$ and 1st \＆3rd number multiple is 12 ．

2．1．3）If $\mathrm{R}=8$ and the square sum value of three number is $\mathbf{8 3}$ and 1 st \＆3rd number multiple is 21 ．Determine the number odd or even．

 vbqKil｜

2．1．4）If $\mathbf{R}=\mathbf{2}$ and the square sum value of three number is $\mathbf{1 4}$ and 1 st $\& \mathbf{3 r d}$ number multiple is 3 ．determine the value of those number．

2．1．5）Determine the value of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ when $\mathrm{a} 2+\mathrm{b} 2+\mathrm{c} 2=29 \& \mathrm{ac}=8$ and constant $\mathrm{R}=2$ ．

TRAI RASHIQ BQARGIA SUTRA AND RANA'S CONSTANT

h ẁ $R=2$. nq Ges $a 2+b 2+c 2=29 \& a c=8 n q, Z \ddagger e a, b, c G i g v b$ vb回 K i
g š Z e"(Comments) :

+ 8801911133012 , + 8801199042799
e-mail: atex.rana@gmail.com, mhrana01@yahoo.com

Solution: 2.1.1)

Let, $\mathbf{a}, \mathbf{b}, \mathbf{c}$ is three integers, According to the question as
$\mathbf{a}^{2}+b^{2}+c^{2}=35-\ldots--(i)$,
a x c = 5 ---------------(ii),
$a=5 / c$
Constant $\mathbf{R}=8$
According to the rana's theory.

```
\(\left\{a^{2}-b^{2}\right\}-\left\{b^{2}-c^{2}\right\}=8\)
\(\Rightarrow a^{2}-2 b^{2}+c^{2}=8\)
\(\Rightarrow a^{2}+b^{2}+c^{2}=8+3 b^{2}\)
\(=>35=8+3 \mathrm{~b} 2\)
=> \(35-8=3 \mathrm{~b} 2\)
=> \(27=3 \mathrm{~b} 2\)
\(\Rightarrow b^{2}=9\)
\(=>b=+3,-3\)
from eqn (i)
\(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=35-\cdots-\cdots(i)\),
\(\Rightarrow a^{2}+3^{2}+c^{2}=35\)
\(\Rightarrow a^{2}+c^{2}=35-9\) (put the value of \(b\) )
\(\Rightarrow \mathrm{a}^{2}+\mathrm{c}^{2}=26\)---(iv)
```

From eqn (iv) \& (iii)
$\Rightarrow a^{2}+c^{2}=26$
$\Rightarrow(5 / \mathrm{c})^{2}+\mathrm{c}^{2}=26$
$=>25 / c^{2}+c^{2}=26$
$=>25 / c^{2}+c^{2}=26$
$=>\left(25+c^{4}\right) / c^{2}=26$
$\Rightarrow 25+\mathrm{c}^{4}=26 \mathrm{x} \mathrm{c2}$
$=>c^{4}-26 c^{2}+25=0$
$=>c^{4}-25 c^{2}-c^{2}+25=0$
$=>c^{2}\left(c^{2}-25\right)-1\left(c^{2}-25\right)=0$
$=>\left(c^{2}-25\right)\left(c^{2}-1\right)=0$
$\Rightarrow\left(c^{2}-25\right)=0$
$\Rightarrow c^{2}=1$
=> $\mathrm{c}=1,-1$
or
$\Rightarrow\left(c^{2}-25\right)=0$
$\Rightarrow c^{2}=25$
=> $\mathrm{c}=5,-5$
From eqn (iii)
$a=5 / c$
$a=5 / 5=1[c=5]$
$a=5 / 1=5[c=1]$

The values three numbers as $1,3,5$ or 5, 3, 1 (Odd)
Solution: 2.1.2)
Let, $\mathbf{p}, \mathbf{q}, r$ is three integers, According to the question as
$\mathbf{p}^{2}+\mathbf{q}^{2}+\mathbf{r}^{2}=56-\cdots-\cdots(i)$,
p $\times r=12$--------------(ii),
$p=12 / r$
Constant R = 8
According to the rana's theory.
$\left\{p^{2}-q^{2}\right\}-\left\{q^{2}-\mathbf{r}^{2}\right\}=8$
$=>p^{2}-2 q^{2}+r^{2}=8$
$\Rightarrow p^{2}+q^{2}+r^{2}=8+3 q^{2}$
$\Rightarrow 56=8+3 q^{2}$
$\Rightarrow 56-8=3 q^{2}$
$\Rightarrow 48=3 q^{2}$
$\Rightarrow q^{2}=16$
$\Rightarrow q=+4,-4$
From eqn (i)
$p^{2}+q^{2}+\mathbf{r}^{2}=56$
$\Rightarrow p^{2}+4^{2}+r^{2}=56$
$\Rightarrow p^{2}+r^{2}=56-16$
$\Rightarrow p^{2}+r^{2}=40$---(iv)
From eqn (iv) \& (iii)
$\Rightarrow p^{2}+\mathbf{r}^{2}=40$
$\Rightarrow(12 / r)^{2}+r^{2}=40$
$\Rightarrow 144 / r^{2}+r^{2}=40$
$\Rightarrow 144 / r^{2}+r^{2}=40$
$\Rightarrow\left(144+r^{4}\right) / r^{2}=40$
$\Rightarrow 144+r^{4}=40 \times r 2$
$\Rightarrow r^{4}-40 r^{2}+144=0$
$\Rightarrow r^{4}-36 r^{2}-4 r^{2}+144=0$
$\Rightarrow r^{2}\left(r^{2}-36\right)-4\left(r^{2}-36\right)=0$
$=>\left(r^{2}-36\right)\left(r^{2}-4\right)=0$
$\Rightarrow\left(r^{2}-36\right)=0$
$\Rightarrow r^{2}=36$
$=>r=6,-6$
or
$\Rightarrow\left(r^{2}-4\right)=0$
$\Rightarrow r^{2}=4$
$\Rightarrow r=2,-2$
From eqn (iii)
$P=12 / r$
$P=12 / 6=2[r=6]$
$\mathrm{p}=12 / 2=6[\mathrm{r}=2]$
The values three numbers as $2,4,6$ or $6,4,2$ or $-2,-4,-6$, (even)
Solution: 2.1.3)
Let, $\mathbf{p}, \mathbf{q}, \mathbf{r}$ is three integers, According to the question as
$x^{2}+y^{2}+z^{2}=83-------(i)$,
x x z = 21 ---------------(ii),
$x=21 / z$
Constant R = 8
According to the rana's theory.
$\left\{\mathrm{x}^{2}-\mathrm{y}^{2}\right\}-\left\{\mathrm{y}^{2}-\mathrm{z}^{2}\right\}=8$

TRAI RASHIQ BQARGIA SUTRA AND RANA'S CONSTANT

$$
\begin{aligned}
& =>x^{2}-2 y^{2}+z^{2}=8 \\
& =>x^{2}+y^{2}+z^{2}=8+3 y^{2} \\
& =>83=8+3 y^{2} \\
& =>83-8=3 y^{2} \\
& =>75=3 y^{2} \\
& =>y^{2}=25 \\
& =>y=+5,-5 \\
& \text { From eqn (i) } \\
& x^{2}+y^{2}+z^{2}=83 \\
& =>x^{2}+5^{2}+z^{2}=83 \\
& =>x^{2}+z^{2}=83-25 \\
& =>x^{2}+z^{2}=58---(i v)
\end{aligned}
$$

From eqn (iv) \& (iii)

$$
\Rightarrow x^{2}+z^{2}=58
$$

$$
\Rightarrow(21 / z)^{2}+z^{2}=58
$$

$$
=>441 / z^{2}+z^{2}=58
$$

$$
=>\left(441+\mathrm{z}^{4}\right) / \mathrm{z}^{2}=58
$$

$$
=>441+z^{4}=58 z^{2}
$$

$$
=>441-58 z^{2}+z^{4}=0
$$

$$
\Rightarrow 49\left(9-z^{2}\right)-z^{2}\left(9-z^{2}\right)=0
$$

$$
=>\left(49-z^{2}\right)\left(9-z^{2}\right)=0
$$

$$
\Rightarrow 49=z^{2} \text { or } 9=z^{2}
$$

$$
=>-7,7=\mathrm{z} \text { or }-3,3=\mathrm{z}
$$

From eqn (iii)
$x=21 / z$
$\mathrm{x}=21 / 7=3[\mathrm{z}=7]$
$\mathrm{x}=21 / 3=7[\mathrm{z}=3]$
The values three numbers as $\mathbf{3 , 5 , 7}$ or $7,5,3$ or $-3,-5,-7(o d d)$, Proved
Solution: 2.1.4)
Let, $\mathbf{l}, \mathrm{m}, \mathrm{n}$ is three integers, According to the question as
$\mathbf{l}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=14-\cdots---(i)$,
$1 \times n=3$ \qquad
$1=3 / n$
Constant $\mathbf{R}=2$
According to the rana's theory.
$\left\{\mathbf{l}^{2}-\mathrm{m}^{2}\right\}-\left\{\mathrm{m}^{2}-\mathbf{n}^{2}\right\}=\mathbf{2}$
$\Rightarrow \mathrm{I}^{2}-2 \mathrm{~m}^{2}+\mathrm{n}^{2}=\mathbf{2}$
$\Rightarrow l^{2}+m^{2}+n^{2}=2+3 m^{2}$
$=>14=2+3 \mathrm{~m}^{2}$
$\Rightarrow 14-2=3 \mathrm{~m}^{2}$
$\Rightarrow 12=3 \mathrm{~m}^{2}$
$\Rightarrow m^{2}=4$
=> $m=+2,-2$
from eqn (i)
$\mathbf{l}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=14$
$=>1^{2}+2^{2}+n^{2}=14$
$\Rightarrow I^{2}+n^{2}=14-4$
$=>1^{2}+n^{2}=10$----(iv)
From eqn (iv) \& (iii)
$=>1^{2}+n^{2}=10$
$\Rightarrow(3 / n)^{2}+n 2=10$
$\Rightarrow 9 / n^{2}+n^{2}=10$
$\Rightarrow\left(9+n^{4}\right) / n^{2}=10$

TRAI RASHIQ BQARGIA SUTRA AND RANA'S CONSTANT
$=>9+n^{4}=10 n^{2}$
$\Rightarrow 9-10 n^{2}+n^{4}=0$
$\Rightarrow 9-n^{2}-9 n^{2}+n^{4}=0$
$\Rightarrow 1\left(9-n^{2}\right)-n^{2}\left(9-n^{2}\right)=0$
$\Rightarrow\left(9-n^{2}\right)\left(1-n^{2}\right)=0$
$\Rightarrow 9=n^{2}$ or $1=n^{2}$
$=>-3,3=n$ or $-1,1=n$
From eqn (iii)
l $=3 / \mathrm{n}$
$\mathrm{l}=3 / 1=3[\mathrm{n}=1]$
$\mathrm{l}=3 / 3=1[\mathrm{n}=3]$
The values three numbers as $1,2,3$ or $3,2,1$ or $-1,-2,-3$ (integer) Proved
Solution: 2.1.5)
Let, a, b, c is three integers
According to the question
$a^{2}+b^{2}+c^{2}=29-\cdots---(i)$
$\mathrm{ac}=8$
$a=8 / c$
(iii)
constant $\mathrm{R}=2$.
According to the rana's theory.
$\left\{\mathbf{a}^{2}-\mathbf{b}^{2}\right\}-\left\{b^{2}-c^{2}\right\}=2$
$\Rightarrow a^{2}-2 b^{2}+c^{2}=2$
$\Rightarrow a^{2}+b^{2}+c^{2}=2+3 b^{2}$
$\Rightarrow 29=2+3 b^{2}$
$\Rightarrow 29-2=3 b^{2}$
$\Rightarrow 27=3 b^{2}$
$\Rightarrow b^{2}=9$
$=>b=+3,-3$
from eqn (i)
$a^{2}+b^{2}+c^{2}=29$
$\Rightarrow a^{2}+3^{2}+c^{2}=29$
$\Rightarrow a^{2}+c^{2}=29-9$
$\Rightarrow \mathbf{a}^{2}+\mathrm{c}^{2}=20--$-(iv)
From eqn (iv) \& (iii)
$\Rightarrow a^{2}+c^{2}=20$
$\Rightarrow(8 / \mathrm{c})^{2}+\mathrm{c}^{2}=20$
$=>64 / c^{2}+c^{2}=20$
$=>64 / \mathrm{c}^{2}+\mathrm{c}^{2}=20$
$=>(64+c 4) / c^{2}=20$
$\Rightarrow 64+\mathrm{c} 4=20 \mathrm{x} \mathrm{c}^{2}$
$\Rightarrow c 4-20 c^{2}+64=0$
$=>c 4-16 c^{2}-4 c^{2}+64=0$
$\Rightarrow>c 2(c 2-16)-4\left(c^{2}-16\right)=0$
$=>\left(c^{2}-16\right)\left(c^{2}-4\right)=0$
$=>(c-16)=0$
$=>\left(c^{2}-4\right)=0$
=> $c=2,-2$
or
$\Rightarrow\left(c^{2}-16\right)=0$
$\Rightarrow c^{2}=16$
$=>c=4,-4$
From eqn (iii)
$a=8 / c$
$a=8 / 2=4[c=2]$
$a=8 / 4=2[c=4]$
The values three numbers as $2,3,4$ or $4,3,2$ (integer), Proved

V. CONCLUSION

At this point, the classification project came within. Its almost incredible conclusion that all finite simple number belongs to certain standard families. The achievements of Mohammad Makbul Hossain (Rana)is the extraordinary, in-depth and influential. His complements each other's and together forms the backbone of modern number theory
Learning this theory the mathematics student will benefited like the followings:

1. Power of Math in a single equation.
2. Odd and Even Number
3. Relation between 1 to $\mathbf{n - 1}$ number (Odd Number)
4. Relation Between 1 to $n+1$ number (even number)
5. Relation between 1 to n number (integer number)
6. Negative and positive numbers in a same relation.
7. Infinity Relation for number.
8. Common relation from all number in integer and odd, even number.
9. It is a "Trai Rashiq" equation so it needs two values to determine the third value.

Acknowledgements

I gratefully acknowledge my indebtedness to Late Rias uddin (Teacher, Dhanua sarkary Primary school), Late Abdul Matin (Teacher, Mowna High School) Md. Afzal Hossain and Abul Hasem (Asst./Professor, Bhawal Badra alam Govt. University College) who have acted as my guideline/supervisor. They inspire me to introduce to the research step to step" in Global context give some extra ordinary invention in the course of my life. In different step of my study they give proper education and made me confident that I can carry on further research as ferric alarm from waste iron, natural color cotton, ak goror langol, number theory in this research work, also Mr. Fazlul Karim patwary (Director IIT, Jahangirnagar University), Dr. Zakir Hossain \& Dr. Iyub Nabi (Directory Primeasia University), Md. Ismail Hossain (Teacher, sher-e-banglanager govt, boys high school) Dr. Monibur Chowdhury and Mr. Seriazul Islam (Prof/ head department Math Dept, Dhaka University) help and guidance have been an outstanding factor for the completion of this work.

I take this opportunity to express my heart full thanks to all of the Authority of IOSRJ for providing me all sorts of valuable information. And Professional institute of Sciences and fashion Technology.

Finally, I extend my indebtedness to my wife Dr. Mariam Akter, friends, office colique, my beloved parents in the form of financial support, encouragement and advice, it can never be returned adequately and these support and blessing have made it possible to carry out this and continuing research work to completion

REFERENCES
[1] $17^{\text {th }}$ science and technology fair 1993 "Number playing by mathematics" DT: 7-9 Th December 1993
[2] Copyright Registration No. 10482 COPR DT: 31/08/2008
[3] Theory of number
[4]Real number analysis as Sequence of number as Number

TRAI RASHIQ BQARGIA SUTRA AND RANA'S CONSTANT
$12=1 \quad 282=784$
$42=16 \quad 29_{2}=841$
$52=25 \quad 302=900$
$252=625 \quad 502=2500$
n. n 2
[5] Shown / Approved by Member secretary of Bangladesh mathematics society and chairman, math department Dhaka university.

Proposal for the research work to publish in IOSRJ

SUBMITTED TO:
Editorial Board,
IOSR Journals
International Organization of Scientific Research (IOSR)

SUBMITTED BY:

 MOHAMMAD MAKBUL HOSSAIN (RANA)Course Teacher
Professional Institute of Sciences Fashion Technology
House\#10, Road \# 3/c, Sector\# 09, Uttara Model Town
Dhaka-Bangladesh-1230
Cell: +8801199042799
E-mail. atex.rana@gmail.com
phd.rana11@gmail.com
www.Matherana.syntahsite.com

SUBMITTED DATE:

 26/06/2015
In Number binnash

$1{ }^{2}$	=	1	26^{2}	=	676
2^{2}	=	4	27^{2}	=	729
3^{2}	=	9	28^{2}	=	784
$4{ }^{2}$	=	16	29^{2}	=	841
5^{2}	=	25	30^{2}	=	900
6^{2}	=	36	31^{2}	=	961
$7{ }^{2}$	=	49	32^{2}	=	1024
$8{ }^{2}$	=	64	33^{2}	=	1089
9^{2}	=	81	34^{2}	=	1156
10^{2}	=	100	35^{2}	=	1225
11^{2}	=	121	36^{2}	=	1296
12^{2}	=	144	37^{2}	=	1369
13^{2}	=	169	38^{2}	=	1444
14^{2}	=	196	39^{2}	=	1521
15^{2}	=	225	40^{2}	=	1600
16^{2}	=	256	41^{2}	=	1681
17^{2}	=	289	42^{2}	=	1764
18^{2}	=	324	43^{2}	$=$	1849
19^{2}	=	361	44^{2}	=	1936
20^{2}	=	400	45^{2}	=	2025
21^{2}	=	441	46^{2}	=	2116
22^{2}	$=$	484	47^{2}	=	2209
23^{2}	=	529	48^{2}	=	2304
24^{2}	=	576	49^{2}	=	2401
25^{2}	=	625	50^{2}	=	2500

[^0]n

Trai Rashik Bargia Sotra By M.H.Rana

$$
a^{2}+2 a b+b^{2}=(a+b)^{2}
$$

Here the algebraic theory
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
Proof the Boolean algebra with Logic gate
We can set the theory $(a+b)^{2}$ by logic gate AND, OR, NOR etc.
This type of simplification helps to the student comparable study between different systems of mathematics. I am also discover another theory in mathematics on Number theory
Ok
Thanks
M.H. Rana

Algebra

1) Math Algebra Basic Identities:

Closure Property of Addition
Sum (or difference) of 2 real numbers equals a real number
Additive Identity
$a+0=a$
Additive Inverse
$a+(-a)=0$

Associative of Addition

$(a+b)+c=a+(b+c)$

Commutative of Addition

$a+b=b+a$
Definition of Subtraction
$a-b=a+(-b)$
Closure Property of Multiplication
Product (or quotient if denominator $\boldsymbol{z} \mathbf{0}$) of 2 reals equals a real number

Multiplicative Identity

Trai Rashik Bargia Sotra By M.H.Rana

Multiplicative Inverse
$a *(1 / a)=1 \quad(a \neq 0)$
(Multiplication times 0)
a* $0=0$
Associative of Multiplication
(a*b) * $c=a *(b * c)$

Commutative of Multiplication

$a * b=b * a$
Distributive Law
$a(b+c)=a b+a c$
Definition of Division
$a / b=a(1 / b)$
2) Math Algebra Exponents Identities:

Powers
$x^{a} x^{b}=x^{(a+b)}$
$x^{a} y^{a}=(x y)^{a}$
$\left(x^{a}\right)^{b}=x^{(a b)}$
$x^{(a / b)}=b^{\text {th }}$ root of $\left(x^{a}\right)=\left(b^{\text {th }} \sqrt{(x)}\right)^{a}$
$x^{(-a)}=1 / x^{a}$
$x^{(a-b)}=x^{a} / x^{b}$

Logarithms

$y=\log _{b}(x)$ if and only if $x=b^{y}$
$\log _{b}(1)=0$
Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,
$\boldsymbol{\operatorname { l o g }}_{\mathrm{b}}(\mathrm{b})=1$
$\log _{b}\left(x^{*} y\right)=\log _{b}(x)+\log _{b}(y)$
$\log _{b}(x / y)=\log _{b}(x)-\log _{b}(y)$
$\log _{b}\left(x^{n}\right)=n \log _{b}(x)$
$\log _{b}(x)=\log _{b}(c) * \log _{c}(x)=\log _{c}(x) / \log _{c}(b)$
3) Math Algebra Polynomials Identities:
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a+b)(c+d)=a c+a d+b c+b d$
$a^{2}-b^{2}=(a+b)(a-b)$ (Difference of squares)
$a^{3} \pm b^{3}=(a \pm b)\left(a^{2} \mp a b+b^{2}\right)$ (Sum and Difference of Cubes)
$x^{2}+(a+b) x+A B=(x+a)(x+b)$
if $a x^{2}+b x+c=0$ then $x=\left(-b \pm \sqrt{\left(b^{2}-4 a c\right)}\right) / 2 a$ (Quadratic Formula)
4) Math | Algebra | Functions Identities:

Synonyms: correspondence, mapping, transformation

Definition: A function is a relation from a domain set to a range set, where each element of the domain set is related to exactly one element of the range set.

An equivalent definition: A function (f) is a relation from a set A to a set B (denoted $f: A$), such that for each element in the domain of $A(\operatorname{Dom}(A))$, the f-relative set of $A(f(A))$ contains exactly one element.

Some common functions (with discussions)

- trig functions
o sine, $\sin (x)$
o cosine, $\cos (x)$

5) Math | Miscellaneous | Algebra graphics

For any of the above with a center at (j, k) instead of $(0,0)$, replace each \underline{x} term with (x j) and each y term with ($y-k$) to get the desired equation.

6) Math | Algebra | Conics sections

Conic Sections

(Math | Algebra | Conics)

Ellipse (v)
Parabola (v)
Hyperbola (v)

Definition:

A conic section is the intersection of a plane and a cone.

By changing the angle and location of intersection, we can produce a circle, ellipse, Parabola or hyperbola; or in the special case when the plane touches the vertex: a point, line or 2 intersecting lines.

The General Equation for a Conic Section:
$A x^{2}+B x y+C y^{2}+D x+E y+F=0$
The type of section can be found from the sign of: $B^{2}-4 A C$

If $B^{2}-4 A C$ is...	then the curve is a...
<0	ellipse, circle, point or no curve.
$=0$	parabola, 2 parallel lines, 1 line or no curve.
>0	hyperbola or 2 intersecting lines.

The Conic Sections. For any of the below with a center (j, k) instead of (0,0), replace each \underline{x} term with ($\mathrm{x}-\mathrm{j}$) and each y term with ($\mathrm{y}-\mathrm{k}$).

	Circle	Ellipse	Parabola	Hyperbola
Equation (horiz. vertex) :	$\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{r}^{2}$	$\begin{aligned} & x^{2} / a^{2}+y^{2} \\ & / b^{2}=1 \end{aligned}$	$4 p x=y^{2}$	$x^{2} / a^{2}-y^{2} / b^{2}=1$
Equations of Asymptotes:				$y= \pm(b / a) x$
Equation (vert. vertex) :	$x^{2}+y^{2}=r^{2}$	$\begin{aligned} & y^{2} / a^{2}+x^{2} \\ & / b^{2}=1 \end{aligned}$	$4 p y=x^{2}$	$y^{2} / a^{2}-x^{2} / b^{2}=1$
Equations of Asymptotes:				$x= \pm(b / a) y$
Variables:	$\begin{aligned} & r=\text { circle } \\ & \text { radius } \end{aligned}$	$a=$ major radius (= 1/2 length major axis) $b=$ minor radius (=	$p=$ distance from vertex to focus (or directrix)	$a=1 / 2$ length major axis $b=1 / 2$ length minor axis $c=$ distance center to focus

www.matherana.synthasite.com

		1/2 length minor axis) c = distance center to focus		
Eccentricity:	0	c/a	1	c/a
Relation to Focus:	$p=0$	$a^{2}-b^{2}=c^{2}$	$\mathrm{p}=\mathrm{p}$	$a^{2}+b^{2}=c^{2}$
Definition: is the locus of all points which meet the condition...	distance to the origin is constant	sum of distances to each focus is constant	distance to focus = distance to directrix	difference between distances to each foci is constant
Related Topics:	Geometry section on Circles			

7) Math | Miscellaneous| Complexity

Basic Operations

$$
i=\Gamma(-1)
$$

$i^{2}=-1$
\{nome

[[Rationale that $\mathrm{i}^{\mathbf{2}}=\mathbf{- 1}$

We know that by definition

$$
i=\boldsymbol{\Gamma}(-1)
$$

Therefore,

$$
\left.\left.i^{2}=[\sqrt{2}(-1)]^{2}=-1 .\right]\right]
$$

$1 / \mathrm{i}=-\mathrm{i}$

```
{NOTE}
```

[[Rationale that $\mathbf{1 / i}=-\mathbf{i}$
We know that by definition

$$
i=\boldsymbol{r}(-1)
$$

Similarly,

$$
i^{*} i=\boldsymbol{\Gamma}(-1) * \boldsymbol{\Gamma}(-1)=\boldsymbol{\Gamma}(-1)^{2}=-1
$$

By algebra we get:

$$
i^{*} i=-1
$$

Young Scientist M.H.Rana,
www.matherana.synthasite.com
-i*i $=1 \quad$ (multiply both sides by -1)
$-i=1 / i \quad$ (divide both sides by i)]]
$i^{4 k}=1 ; i^{(4 k+1)}=i ; i^{(4 k+2)}=-1 ; i^{(4 k+3)}=-i(k=$ integer $)$
$\boldsymbol{J}(\mathrm{i})=\boldsymbol{J}(1 / 2)+\boldsymbol{J}(1 / 2)$ i \&NOM
[Rationale that $\boldsymbol{\Sigma}(\mathrm{i})=\boldsymbol{s}(1 / 2)+i \boldsymbol{\Gamma}(1 / 2)$
Assuming that

$$
\begin{aligned}
& \boldsymbol{\Gamma}(i)=\sqrt{ }(1 / 2)+i \boldsymbol{~}(1 / 2) \\
& \text { we can square both sides to get } \\
& i=[\boldsymbol{\Gamma}(1 / 2)+i \boldsymbol{i}(1 / 2)]^{2} \\
& i=\left[(1 / 2)+2(1 / 2) i+(1 / 2) i^{2}\right] \\
& i=[(1 / 2)+i+(1 / 2)(-1)] \\
& i=i \text { (which is a true statement) }
\end{aligned}
$$

This is not a proof, but simply evidence that the formula is correct.]]

Complex Definitions of Functions and Operations

$(a+b i)+(c+d i)=(a+c)+(b+d) i$
$(a+B I)(c+D I)=a c+a d i+b c i+b d i^{2}=(a c-b d)+(a d+b c) i$
$1 /(a+B I)=a /\left(a^{2}+b^{2}\right)-b /\left(a^{2}+b^{2}\right) i$
$(a+B I) /(c+D I)=(a c+B D) /\left(c^{2}+d^{2}\right)+(B C-a d) /\left(c^{2}+d^{2}\right) i$
$a^{2}+b^{2}=(a+B I)(a-B I) \quad$ (sum of squares)
$e^{(i \theta)}=\cos \theta+i \sin \theta$ (Nate $\}$
[[Justifications that $\mathbf{e}^{\mathbf{i}^{\theta}}=\boldsymbol{\operatorname { c o s }}\left({ }^{\theta}\right)+\mathbf{i} \boldsymbol{\operatorname { s i n }}\left({ }^{\theta}\right)$

$$
e^{i x}=\cos (x)+i \sin (x)
$$

Justification \#1: from the derivative

 Young Scientist M.H.Rana, www.matherana.synthasite.comConsider the function on the right hand side (RHS) $f(x)=\operatorname{COs}(x)+i \sin (x)$

Differentiate this function
$\mathrm{f}^{\prime}(\mathrm{x})=-\sin (\mathrm{x})+\mathrm{i} \operatorname{COs}(\mathrm{x})=\mathrm{if}(\mathrm{x})$
So, this function has the property that its derivative is itimes the original function.
What other type of function has this property?
A function $g(x)$ will have this property if $\mathrm{dg} / \mathrm{dx}=\mathrm{i} \mathrm{g}$
This is a differential equation that can be solved with separation of variables
$(1 / g) d g=i d x$
$(1 / g) d g=\int i d x$
$\ln |g|=i x+C$
$|g|=e^{i x+c}=e^{c} e^{i x}$
$|g|=C_{2} e^{i x}$
$g=C_{3} e^{i x}$
So we need to determine what value (if any) of the constant C_{3} makes $g(x)=f(x)$. If we set $x=0$ and evaluate $f(x)$ and $g(x)$, we get
$f(x)=\operatorname{COs}(0)+i \sin (0)=1$
$g(x)=C_{3} e^{i 0}=C_{3}$
These functions are equal when $C_{3}=1$.
Therefore,
$\cos (x)+i \sin (x)=e^{i x}$

Justification \#2: the series method

(This is the usual justification given in textbooks.)
By use of Taylor's Theorem, we can show the following to be true for all real numbers:
$\boldsymbol{\operatorname { s i n }} x=x-x^{3} / 3!+x^{5} / 5!-x^{7} / 7!+x^{9} / 9!-x^{11} / 11!+\ldots$
COs $x=1-x^{2} / 2!+x^{4} / 4!-x^{6} / 6!+x^{8} / 8!-x^{10} / 10!+\ldots$
$\mathbf{e}^{\mathbf{x}}=1+x+x^{2} / 2!+x^{3} / 3!+x^{4} / 4!+x^{5} / 5!+x^{6} / 6!+x^{7} / 7!+x^{8} / 8!+x^{9} / 9!+x^{10} / 10!+x^{11} / 11!+\ldots$
Knowing that, we have a mechanism to determine the value of $e^{\theta_{i}}$, because we can express it in terms of the above series:
 $+\left(\theta_{i}\right)^{10} / 10!+\left(\theta_{\mathrm{i}}\right)^{11} / 11!+\ldots$
We know how to evaluate an imaginary number raised to an integer power, which is done as such:
$\mathrm{i}^{1}=\mathrm{i}$
$i^{2}=-1 \quad$ terms repeat every four
$i^{3}=-i$
$i^{4}=1$
Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,
www.matherana.synthasite.com
$i^{5}=i$
$i^{6}=-1$
etc...
We can see that it repeats every four terms. Knowing this, we can simplify the above expansion: $e^{\wedge}\left({ }^{\theta} i\right)=1+\theta_{i}-\theta^{2} / 2!-i^{\beta 3} / 3!+{ }^{\theta} / 4!+i^{65} / 5!-\theta^{6} / 6!-i^{\theta^{7}} / 7!+{ }^{\theta} / 8!+i^{\theta 9} / 9!-\theta^{10} / 10!-i^{\theta 11} / 11!+$

It just so happens that this power series can be broken up into two very convenient series:
$\mathrm{e}^{\wedge}\left(\Theta_{\mathrm{i}}\right)=$
[1- $\left.\theta^{2} / 2!+\theta^{4} / 4!-\theta^{6} / 6!+\theta^{8} / 8!-\theta^{10} / 10!+\ldots\right]$
$+$
$\left[i^{\Theta}-i^{\Theta^{3}} / 3!+i^{\theta^{5}} / 5!-i^{\Theta 7} / 7!+i^{\Theta 9} / 9!-i^{\Theta 11} / 11!+\ldots\right]$
Now, look at the series expansions for sine and cosine. The above above equation happens to include those two series. The above equation can therefore be simplified to
$\mathbf{e}^{\wedge}\left({ }^{\theta_{i}}\right)=\boldsymbol{\operatorname { C O s }}\left({ }^{\ominus}\right)+\mathbf{i} \boldsymbol{\operatorname { s i n }}\left({ }^{\ominus}\right)$
An interesting case is when we set $\theta=\pi$, since the above equation becomes
$e^{\wedge}\left(\pi^{\pi}\right)=-1+0 i=-1$.
which can be rewritten as
$\mathbf{e}^{\wedge}(\pi \mathbf{i})+\mathbf{1}=\mathbf{0} . \quad$ special case
which remarkably links five very fundamental constants of mathematics into one small equation.
Again, this is not necessarily a proof since we have not shown that the $\sin (x), \operatorname{COs}(x)$, and e^{x} series converge as indicated for imaginary numbers.]]

$$
n^{(a+B I)}=(\operatorname{COs}(b \ln n)+i \sin (b \ln n)) n^{a}
$$

if $z=r(\operatorname{COs} \boldsymbol{\theta}+i \sin \boldsymbol{\theta})$ then $z^{n}=r^{n}(\operatorname{COs} n \boldsymbol{\theta}+i \sin n \boldsymbol{\theta})($ DeMoivre's Theorem)
if $w=r(\operatorname{COs} \theta+i \sin \theta) ; n=$ integer, then there are n complex nth roots (z) of w for $k=0,1, \ldots n-1$:

$$
\begin{aligned}
& z(k)=r^{(1 / n)}[\operatorname{COs}((\theta+2(P I) k) / n)+i \sin ((\theta+2(P I) k) / n)] \\
& \text { if } z=r(\operatorname{COs} \theta+i \sin \theta) \text { then } \ln (z)=\ln r+i \theta \\
& \sin (a+B I)=\sin (a) \cosh (b)+\operatorname{COs}(a) \sinh (b) i \\
& \operatorname{COs}(a+B I)=\operatorname{COs}(a) \cosh (b)-\sin (a) \sinh (b) i \\
& \tan (a+B I)=(\tan (a)+i \tanh (b)) /(1-i \tan (a) \tanh (b)) \\
& =\left(\operatorname{sech}^{2}(b) \tan (a)+\sec ^{2}(a) \tanh (b) i\right) /\left(1+\tan ^{2}(a) \tanh ^{2}(b)\right)
\end{aligned}
$$

8) Math \mid Miscellaneous \mid Complexity $\mid i^{\wedge}{ }^{2}$)

Young Scientist M.H.Rana,
Rationale that $\mathrm{i}^{2}=\mathbf{- 1}$
We know that by definition
$i=\boldsymbol{J}(-1)$
Therefore,
$\mathrm{i}^{2}=[\boldsymbol{\Gamma}(-1)]^{2}=-1$.
9) Math | Miscellaneous | math table: Vectors

Prelude: A vector, as defined below, is a specific mathematical structure. It has numerous physical and geometric applications, which result mainly from its ability to represent magnitude and direction simultaneously. Wind, for example, had both a speed and a direction and, hence, is conveniently expressed as a vector. The same can be said of moving objects and forces. The location of a points on a cartesian coordinate plane is usually expressed as an ordered pair (x, y), which is a specific example of a vector. Being a vector, (x, y) has a a certain distance (magnitude) from and angle (direction) relative to the origin (0,0). Vectors are quite useful in simplifying problems from three-dimensional geometry.

Definition:A scalar, generally speaking, is another name for "real number."
Definition: A vector of dimension n is an ordered collection of n elements, which are called components.

Notation: We often represent a vector by some letter, just as we use a letter to denote a scalar (real number) in algebra. In typewritten work, a vector is usually given a bold letter, such as A, to distinguish it from a scalar quantity, such as A. In handwritten work, writing bold letters is difficult, so we typically just place a right-handed arrow over the letter to denote a vector. An n-dimensional vector A has n elements denoted as A1, A2, ... An. Symbolically, this can be written in multiple ways:
$A=<A 1, A 2, \ldots, A n>$
$A=(A 1, A 2, \ldots, A n)$
Example: (2,-5), (-1, 0, 2), (4.5), and (PI, a, b, 2/3) are all examples of vectors of dimension 2, 3, 1 , and 4 respectively. The first vector has components 2 and -5 .

Note: Alternately, an "unordered" collection of n elements $\{A 1, A 2, \ldots, A n\}$ is called a "set."
Definition: Two vectors are equal if their corresponding components are equal.
Example: If $\mathbf{A}=(-2,1)$ and $\mathbf{B}=(-2,1)$, then $\mathbf{A}=\mathbf{B}$ since $-2=-2$ and $1=1$. However, $(5,3)$ not_equal $(3,5)$ because even though they have the same components, 3 and 5 , the component do not occur in the same order. Contrast this with sets, where $\{5,3\}=\{3,5\}$.

Definition: The magnitude of a vector \mathbf{A} of dimension n, denoted $|\mathbf{A}|$, is defined as

Young Scientist M.H.Rana,
www.matherana.synthasite.com
$|A|=\operatorname{sqrt}\left(A 1^{\wedge} 2+A 2^{\wedge} 2+\ldots+A n^{\wedge} 2\right)$
Geometrically speaking, magnitude is synonymous with "length," "distance", or "speed." In the twodimensional case, the point represented by the vector $A=(A 1, A 2)$ has a distance from the origin (0 , 0) of sqrt(A1^2 $+A 2^{\wedge} 2$) according to the pythagorean theorem. In the three-dimension case, the point represented by the vector $A=(A 1, A 2, A 3)$ has a distance from the origin of sqrt $\left(A 1 \wedge 2+A 2^{\wedge} 2\right.$ $+A 3^{\wedge} 2$) according to the three-dimensional form of the Pythagorean theorem (A box with sides a, b, and c has a diagonal of length sqrt $(a 2+b 2+c 2)$). With vectors of dimension n greater than three, our geometric intuition fails, but the algebraic definition remains.

Definition: The sum of two vectors $\mathbf{A}=(\mathrm{A} 1, \mathrm{~A} 2, \ldots, A n)$ and $\mathbf{B}=(B 1, B 2, \ldots, B n)$ is defined as
$\mathbf{A}+\mathbf{B}=(A 1+B 1, A 2+B 2, \ldots, A n+B n)$
Note: Addition of vectors is only defined if both vectors have the same dimension.
Example:
$(2,-3)+(0,1)=(2+0,-3+1)=(2,-2)$.
$(0.1,2)+(-1, \mathrm{PI})=(0.1+-1,2+\mathrm{PI})=(-0.9,2+\mathrm{PI})$
Justification: Physical and geometric applications warrant such a definition. IF a train travels East at 5 meters/second relative to the ground, which will be denoted in vector notation as VT $=(0,5)$, and a person on the train walks South at 1 meter/second relative to the train, which will be denoted as $\mathrm{VP}=(-1,0)$, THEN the direction and speed that the person is traveling relative to the ground is represented by the vector $\mathrm{VG}=\mathrm{VT}+\mathrm{VP}=(0,5)+(-1,0)=(0+-1,5+0)=(-1,5)$. This vector has a magnitude of $|\mathrm{VG}|=\operatorname{sqrt}\left((-1)^{\wedge} 2+5^{\wedge} 2\right)=\operatorname{sqrt}(6)=2.449 \ldots$, which means that the person is traveling at about 2.449 meters/ second relative to the ground and the net direction is mostly East but slightly South.

Definition: The scalar product of a scalar k by a vector $\mathbf{A}=(A 1, A 2, \ldots, A n)$ is defined as
$k \mathbf{A}=(k A 1, k A 2, \ldots, k A n)$

Example:

$2(5,-4)=(2 * 5,2 *-4)=(10,-8)$
$-3(1,2)=\left(-3^{*} 1,-3^{*} 2\right)=(-3,-6)$
$0(3,1)=(0 * 3,0 * 1)=(0,0)$
$1(2,3)=(1 * 2,1 * 3)=(2,3)$
Note: In general, $\mathbf{O A}=(0,0, \ldots, 0)$ and $1 \mathbf{A}=\mathbf{A}$, just as in the algebra of scalars. The vector of any dimension n with all zero elements ($0,0, \ldots, 0$) is called the zero vector and is denoted $\mathbf{0}$.

See also: Vector Definitions

Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,
www.matherana.synthasite.com
Vector Notation: The lower case letters a-h, l-z denote scalars. Uppercase bold A-Z denote vectors. Lowercase bold $\mathbf{i}, \mathbf{j}, \mathbf{k}$ denote unit vectors. <a, b>denotes a vector with components a and b. < x_{1}, \ldots, $x_{n}>$ denotes vector with n components of which are $x_{1}, x_{2}, x_{3}, . ., x_{n} .|\mathbf{R}|$ denotes the magnitude of the vector \mathbf{R}.
$|<a, b>|=$ magnitude of vector $=\sqrt{(}\left(a^{2}+b^{2}\right)$
$\left|<x_{1}, \ldots, x_{n}>\right|=\sqrt{ }\left(x_{1}{ }^{2}+. .+x_{n}{ }^{2}\right)$
$\langle a, b\rangle+\langle c, d\rangle=<a+c, b+d\rangle$
$\left.\left.\left.<x_{1}, . ., x_{n}\right\rangle+<y_{1}, . ., y_{n}\right\rangle=<x_{1}+y_{1}, . ., x_{n}+y_{n}\right\rangle$
$\mathrm{k}\langle\mathrm{a}, \mathrm{b}\rangle=<\mathrm{ka}, \mathrm{kb}>$
$\left.k\left\langle x_{1}, \ldots, x_{n}\right\rangle=<k x_{1}, \ldots, k x_{2}\right\rangle$
$<a, b>.<c, d>=a c+b d$
$<x_{1}, \ldots, x_{n}>.<y_{1}, . ., y_{n}>=x_{1} y_{1}+. .+x_{n} y_{n}>$
$\mathbf{R} \mathbf{s} \mathbf{S}=|\mathbf{R}||\mathbf{S}| \cos \boldsymbol{\theta}(\boldsymbol{\theta}=$ angle between them $)$
R $\mathbf{~ S}=\mathbf{S} \boldsymbol{\sim} \mathbf{R}$
$(a \mathbf{R}) \cdot(b \mathbf{S})=(a b) \mathbf{R} \cdot \mathbf{S}$
$\mathbf{R} \cdot \mathbf{(S + T) = R} \mathbf{R} \mathbf{S}+\mathbf{R} \boldsymbol{\mathbf { T }}$
$\mathbf{R} \cdot \mathbf{R}=|\mathbf{R}|^{2}$
$|\mathbf{R} \times \mathbf{S}|=|\mathbf{R}||\mathbf{S}| \sin \boldsymbol{\theta}(\boldsymbol{\theta}=$ angle between both vectors $)$. Direction of $\mathbf{R} \times \mathbf{S}$ is perpendicular to $\mathbf{A} \&$ \mathbf{B} and according to the right hand rule.
| i j k |
$\mathbf{R} \times \mathbf{S}=\left|r_{1} r_{2} r_{3}\right|=/\left|r_{2} r_{3}\right| \quad\left|r_{3} r_{1}\right| \quad\left|r_{1} r_{2}\right| \$
$\left|s_{1} s_{2} s_{3}\right| \backslash\left|s_{2} s_{3}\right|,\left|s_{3} s_{1}\right|,\left|s_{1} s_{2}\right| /$
$\mathbf{S} \times \mathbf{R}=-\mathbf{R} \times \mathbf{S}$
$(\mathrm{a} \mathbf{R}) \times \mathbf{S}=\mathbf{R} \times(\mathrm{a} \mathbf{S})=\mathrm{a}(\mathbf{R} \times \mathbf{S})$
$\mathbf{R} \times(\mathbf{S}+\mathbf{T})=\mathbf{R} \times \mathbf{S}+\mathbf{R} \times \mathbf{T}$
Trai Rashik Bargia Sotra By M.H.Rana
$\mathbf{R} \times \mathbf{R}=0$
If $a, b, c=$ angles between the unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ and R Then the direction cosines are set by:

$$
\operatorname{COs} a=(\mathbf{R} \mathbf{a}) /|\mathbf{R}| ; \operatorname{COs} b=(\mathbf{R} \mathbf{~} \mathbf{j}) /|\mathbf{R}| ; \operatorname{COs} c=(\mathbf{R} \mathbf{~} \mathbf{k}) /|\mathbf{R}|
$$

$|\mathbf{R} \times \mathbf{S}|=$ Area of parrallagram with sides $\mathbf{R a n d} \mathbf{S}$.
Component of \mathbf{R} in the direction of $\mathbf{S}=|\mathbf{R}| \operatorname{COs} \mathbf{\theta}=(\mathbf{R} \mathbf{~} \mathbf{S}) /|\mathbf{S}|$ (scalar result)
Projection of \mathbf{R} in the direction of $\mathbf{S}=|\mathbf{R}| \operatorname{COs} \boldsymbol{\theta}=(\mathbf{R} \mathbf{~} \mathbf{S}) \mathbf{S} /|\mathbf{S}|^{2}$ (vector result)

10) \quad Math | Trig | Trigonometric Graphs

11) Unprove theorem

Riemann Hypothesis

zeta(s) $=1 / 1^{s}+1 / 2^{s}+1 / 3^{s}+\ldots(s=a+i t)$ all 0 's of zeta(s) in strip $0<=a<=1$ lie on central line $a=1 / 2$

Twin Primes occur infinitely

Twin primes are primes that are 2 integers apart. Examples include $5 \& 7,17 \& 19,101 \&$ 103

Goldbach's Postulate

Every even \# > 2 can be expressed as the sum of 2 primes.
$4=2+2,6=3+3,8=3+5,10=5+5,12=5+7, . ., 100=3+97, \ldots$

Euclid's Parallel Postulate

Through a point, not on a line, there exists exactly 1 line parallel to the given line. (Then there's those non-Euclidean people...)
$\sum_{(k=1 . . \infty) 1 / k^{n}=?}$
Although others have found that this expression equals $\mathrm{PI}^{2} / 6$ when $\mathrm{n}=2, \mathrm{PI}^{4} / 90$ when n $=4$ and similar solutions for all possible even values of n, no one has discovered an exact value when n is an odd integer ($3,5,7, \ldots$) (note: when $n=1$, the sum does not converge, but it does has relations to the gamma constant).

Trairashiq bargia sutra and rana's constant
12) Math | Geometry | Volume Formulas
pi $=\pi_{=3.141592 \ldots)}$

Volume Formulas

Note: "ab" means "a" multiplied by "b". "a ${ }^{2}$ " means "a squared", which is the same as "a" times "a". "b" means "b cubed", which is the same as "b" times "b" times "b".

Be careful!! Units count. Use the same units for all measurements. Examples
cube $=a^{3}$

rectangular prism $=\mathrm{abc}$

irregular prism $=\mathbf{b} \mathrm{h}$

cylinder $=\mathbf{b} h=p i r^{2} h$

pyramid $=(1 / 3) \mathbf{b}$ h

cone $=(1 / 3) \mathbf{b} h=1 / 3 \mathrm{pi} \mathrm{r}^{2} \mathrm{~h}$

sphere $=(4 / 3)$ pi 3
ellipsoid $=(4 / 3)$ pi $r_{1} r_{2} r_{3}$

Units

Volume is measured in "cubic" units. The volume of a figure is the number of cubes required to fill it completely, like blocks in a box.

Volume of a cube $=$ side times side times side. Since each side of a square is the same, it can simply be the length of one side cubed.

If a square has one side of 4 inches, the volume would be 4 inches times 4 inches times 4 inches, or 64

Young Scientist M.H.Rana,
www.matherana.synthasite.com
cubic inches. (Cubic inches can also be written in ${ }^{3}$.)
Be sure to use the same units for all measurements. You cannot multiply feet times inches times yards, it doesn't make a perfectly cubed measurement.

The volume of a rectangular prism is the length on the side times the width times the height. If the width is 4 inches, the length is 1 foot and the height is 3 feet, what is the volume?

NOT CORRECT 4 times 1 times $3=12$
CORRECT.... 4 inches is the same as $1 / 3$ feet. Volume is $1 / 3$ feet times 1 foot times 3 feet $=1$ cubic foot (or 1 cu . ft., or $1 \mathrm{ft}^{3}$).

Geometry

13) Circles:

Definition: A circle is the locus of all points equidistant from a central point.

Definitions Related to Circles

arc: a curved line that is part of the circumference of a circle
chord: a line segment within a circle that touches 2 points on the circle.
circumference: the distance around the circle.
diameter: the longest distance from one end of a circle to the other.
origin: the center of the circle
pi (π): A number, $3.141592 \ldots$, equal to (the circumference) / (the diameter) of any circle.
radius: distance from center of circle to any point on it.
sector: is like a slice of pie (a circle wedge).
tangent of circle: a line perpendicular to the radius that touches ONLY one point on the circle.
Diameter $=2 \times$ radius of circle
Circumference of Circle $=\mathbf{P I} \times$ diameter $=2 \mathrm{PI} \times$ radius where $\underline{\text { PI }}=\boldsymbol{\pi}=\mathbf{3 . 1 4 1 5 9 2} \ldots$

Area of Circle:

$$
\text { area }=\mathrm{PI} \mathrm{r}^{2}
$$

Length of a Circular Arc: (with central angle $\boldsymbol{\theta}$)
if the angle $\boldsymbol{\theta}$ is in degrees, then length $=\boldsymbol{\theta}_{\times}(\mathrm{PI} / 180) \times r$
if the angle $\boldsymbol{\theta}_{\text {is }}$ in radians, then length $=r \times \boldsymbol{\theta}$
Area of Circle Sector: (with central angle $\mathbf{\theta}$)
if the angle $\boldsymbol{\theta}$ is in degrees, then area $=(\theta / 360) \times \mathrm{PI} \mathrm{r}^{2}$
if the angle $\boldsymbol{\theta}$ is in radians, then area $=\left((\boldsymbol{\theta} /(2 \mathrm{PI})) \times \mathrm{PI} \mathrm{r}^{2}\right.$

Equation of Circle: (Cartesian coordinates)

for a circle with center (\mathbf{j}, \mathbf{k}) and radius (\mathbf{r}) : $(x-j)^{\wedge}+(y-k)^{\wedge}=r^{\wedge}$

Equation of Circle: (polar coordinates)
for a circle with center $(0,0): \quad \mathbf{r}(\theta)=$ radius
for a circle with center with polar coordinates: (c, $\boldsymbol{\alpha}$) and radius a:

Equation of a Circle: (parametric coordinates)
for a circle with origin (j, k) and radius r :
$x(t)=r \cos (t)+j \quad y(t)=r \sin (t)+k$

14) Polygon Properties

What is a Polygon?
A closed plane figure made up of several line segments that are joined together. The sides do not cross each other. Exactly two sides meet at every vertex.

Types | Formulas | Parts | Special Polygons | Names

Types of Polygons

Regular - all angles are equal and all sides are the same length. Regular polygons are both equiangular and equilateral.
Equiangular - all angles are equal.
Equilateral - all sides are the same length.

Convex - a straight line drawn through a convex polygon crosses at most two sides. Every interior angle is less than 180°.

Concave - you can draw at least one straight line through a concave polygon that crosses more than two sides. At least one interior angle is more than 180°.

Polygon Formulas

($\mathrm{N}=$ \# of sides and $\mathrm{S}=$ length from center to a corner)

Area of a regular polygon $=(1 / 2) N \sin \left(360^{\circ} / N\right) S^{2}$
Sum of the interior angles of a polygon $=(\mathrm{N}-2) \times 180^{\circ}$
The number of diagonals in a polygon $=1 / 2 \mathrm{~N}(\mathrm{~N}-3)$
The number of triangles (when you draw all the diagonals from one vertex) in a polygon $=(\mathrm{N}-2)$

Polygon Parts

Side - one of the line segments that make up the polygon.

Vertex - point where two sides meet. Two or more of these points are called vertices.

Diagonall - a line connecting two vertices that isn't a side.
Interior Angle - Angle formed by two adjacent sides inside the polygon.

Exterior Angle - Angle formed by two adjacent sides outside the polygon.

Special Polygons

Special Quadrilaterals - square, rhombus, parallelogram, rectangle, and the trapezoid.
Special Triangles - right, equilateral, isosceles, scalene, acute, obtuse.
Polygon Names
Generally accepted names

Sides	Name
n	N-gon
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
10	Decagon
12	Dodecagon

Young Scientist M.H.Rana,
Names for other polygons have been proposed.

Sides	Name
9	Nonagon, Enneagon
11	Undecagon, Hendecagon
13	Tridecagon, Triskaidecagon
14	Tetradecagon, Tetrakaidecagon
15	Pentadecagon, Pentakaidecagon
16	Hexadecagon, Hexakaidecagon
17	Heptadecagon, Heptakaidecagon
18	Octadecagon, Octakaidecagon
19	Enneadecagon, Enneakaidecagon
20	Icosagon
30	Triacontagon
40	Tetracontagon
50	Pentacontagon
60	Hexacontagon
70	Heptacontagon
80	Octacontagon
90	Enneacontagon
100	Hectogon, Hecatontagon
1,000	Chiliagon
10,000	Myriagon

To construct a name, combine the prefix+suffix

Sides	Prefix	
20	Icosikai...	
30	Triacontakai...	
40	Tetracontakai...	
50	Pentacontakai...	
60	Hexacontakai...	
70	Heptacontakai...	
80	Octacontakai...	
90	Enneacontakai...	

Sides Suffix

+1 ...henagon
+2 ...digon
+3 ...trigon
+4 ...tetragon
+5 ...pentagon
+6 ...hexagon
+7 ...heptagon
+8 ...octagon
+9 ...enneagon

Young Scientist M.H.Rana,
Examples:
46 sided polygon - Tetracontakaihexagon
28 sided polygon - Icosikaioctagon
However, many people use the form n-gon, as in 46-gon, or 28 -gon instead of these names.
15) Area Formulas
pi $=\pi=3.141592 \ldots$...)

Area Formulas

Note: "ab" means "a" multiplied by "b". "a2" means "a squared", which is the same as "a" times "a".
Be careful!! Units count. Use the same units for all measurements. Examples

circle $=p i r^{2}$

ellipse $=p i r_{1} r_{2}$

www.matherana.synthasite.com

| equilateral triangle $=\quad \frac{\sqrt{3}}{4}\left(a^{2}\right) \quad a$ |
| :--- | :--- |
| a |

triangle given SAS (two sides and the opposite angle) $=(1 / 2) a b \sin C$
triangle given $a, b, c=\sqrt{[s}(s-a)(s-b)(s-c)]$ when $s=(a+b+c) / 2$ (Heron's formula)
regular polygon $=(1 / 2) n \sin \left(360^{\circ} / n\right) S^{2}$
when $\mathrm{n}=\#$ of sides and $\mathrm{S}=$ length from center to a corner

Units

Area is measured in "square" units. The area of a figure is the number of squares required to cover it completely, like tiles on a floor.

Area of a square = side times side. Since each side of a square is the same, it can simply be the length of one side squared.

If a square has one side of 4 inches, the area would be 4 inches times 4 inches, or 16 square inches. (Square inches can also be written in ${ }^{2}$.)

Be sure to use the same units for all measurements. You cannot multiply feet times inches, it doesn't make a square measurement.

The area of a rectangle is the length on the side times the width. If the width is 4 inches and the length is 6 feet, what is the area?

NOT CORRECT 4 times $6=24$
CORRECT.... 4 inches is the same as $1 / 3$ feet. Area is $1 / 3$ feet times 6 feet $=2$ square feet. (or 2 sq. ft ., or $2 \mathrm{ft}^{2}$).
16) Perimeter
pi $=\pi=3.141592 \ldots$...

Young Scientist M.H.Rana, www.matherana.synthasite.com

Perimeter Formulas

The perimeter of any polygon is the sum of the lengths of all the sides.
Note: "ab" means "a" multiplied by "b". "a²" means "a squared", which is the same as "a" times "a".
Be careful!! Units count. Use the same units for all measurements. Examples

a

rectangle $=2 a+2 b$ \square
triangle $=a+b+c$

circle $=2 p i r$

circle $=p i \mathrm{~d}$ (where d is the diameter)
The perimeter of a circle is more commonly known as the circumference.

Units

Be sure to only add similar units. For example, you cannot add inches to feet.
For example, if you need to find the perimeter of a rectangle with sides of 9 inches and 1 foot, you must first change to the same units.
perimeter $=2(\mathrm{a}+\mathrm{b})$
INCORRECT
perimeter $=2(9+1)=2 * 10=20$

CORRECT

perimeter $=2(9$ inches +1 foot $)$
$=2(3 / 4$ foot +1 foot $)$
$=2(13 / 4$ feet $)$
$=31 / 2$ feet

17) Surface Area Formulas)

Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana, www.matherana.synthasite.com (pi $=\pi_{=3.141592 \ldots)}$)

Surface Area Formulas

In general, the surface area is the sum of all the areas of all the shapes that cover the surface of the object.

Cube | Rectangular Prism | Prism | Sphere | Cylinder | Units

Note: "ab" means "a" multiplied by "b". "a2" means "a squared", which is the same as "a" times "a".
Be careful!! Units count. Use the same units for all measurements. Examples

Surface Area of a Cube $=6 \mathrm{a}^{\mathbf{2}}$

(a is the length of the side of each edge of the cube)
In words, the surface area of a cube is the area of the six squares that cover it. The area of one of them is a*a, or a ${ }^{2}$. Since these are all the same, you can multiply one of them by six, so the surface area of a cube is 6 times one of the sides squared.

Surface Area of a Rectangular Prism $=\mathbf{2 a b}+2 b c+2 a c$

(a, b, and c are the lengths of the 3 sides)
In words, the surface area of a rectangular prism is the area of the six rectangles that cover it. But we don't have to figure out all six because we know that the top and bottom are the same, the front and back are the same, and the left and right sides are the same.

The area of the top and bottom (side lengths a and c) $=a^{*}$ c. Since there are two of them, you get 2ac. The front and back have side lengths of b and c. The area of one of them is $b^{*} c$, and there are two of them, so the surface area of those two is $2 b c$. The left and right side have side lengths of a and b, so the surface area of one of them is $a * b$. Again, there are two of them, so their combined surface area is 2 ab .

Surface Area of Any Prism

Young Scientist M.H.Rana,
(b is the shape of the ends)
Surface Area $=$ Lateral area + Area of two ends
$($ Lateral area $)=($ perimeter of shape $\mathbf{b}) * L$
Surface Area $=($ perimeter of shape $\mathbf{b}) * L+2^{*}($ Area of shape $\mathbf{b})$

Surface Area of a Sphere $=4 \mathrm{pir}^{2}$

(r is radius of circle)

Surface Area of Cylinder $=2 p i r^{2}+2 p i r h$

(h is the height of the cylinder, r is the radius of the top)
Surface Area $=$ Areas of top and bottom +Area of the side
Surface Area $=2($ Area of top $)+(\text { perimeter of top })^{*}$ height
Surface Area $=2\left(p i r^{2}\right)+(2 p i r)^{*} h$
In words, the easiest way is to think of a can. The surface area is the areas of all the parts needed to cover the can. That's the top, the bottom, and the paper label that wraps around the middle.

You can find the area of the top (or the bottom). That's the formula for area of a circle (pi r^{2}). Since there is both a top and a bottom, that gets multiplied by two.

The side is like the label of the can. If you peel it off and lay it flat it will be a rectangle. The area of a rectangle is the product of the two sides. One side is the height of the can, the other side is the perimeter of the circle, since the label wraps once around the can. So the area of the rectangle is (2 pir $)^{*} \mathrm{~h}$.

Add those two parts together and you have the formula for the surface area of a cylinder.
Surface Area $=2\left(p i r^{2}\right)+(2 p i r)^{*} h$

Tip! Don't forget the units.

These equations will give you correct answers if you keep the units straight. For example - to find the surface area of a cube with sides of 5 inches, the equation is:

Surface Area $=6 *(5 \text { inches })^{2}$
$=6{ }^{*}$ (25 square inches)
$=150$ sq. inches

Trigonometry

18) Math | Triq | LableSides)

Trig: Labeling Sides

Since there are three sides and two non-right angles in a right triangle, the trigonometric functions will need a way of specifying which sides are related to which angle. (It is not-so-useful to know that the ratio of the lengths of two sides equals 2 if we do not know which of the three sides we are talking about. Likewise, if we determine that one of the angles is 40°, it would be nice to know of which angle this statement is true.

We need a way of labeling the sides. Consider a general right triangle:

A right triangle has two non-right angles, and we choose one of these angles to be our angle of interest, which we label "q." ("q" is the Greek letter "theta.")

We can then uniquely label the three sides of the right triangle relative to our choice of q. As the above picture illustrates, our choice of q affects how the three sides get labeled.

We label the three sides in this manner: The side opposite the right angle is called the hypotenuse. This side is labeled the same regardless of our choice of q. The labeling of the remaining two sides depend on our choice of theta; we therefore speak of these other two sides as being adjacent to the angle q or opposite to the angle q. The remaining side that touches the angle q is considered to be the side adjacent to q, and the remaining side that is far away from the angle q is considered to be opposite to the angle q, as shown in the picture.

Young Scientist M.H.Rana,
www.matherana.synthasite.com
19) Math | Algebra| Function |Overview

Trig Functions: Overview

Under its simplest definition, a trigonometric (literally, a "triangle-measuring") function, is one of the many functions that relate one non-right angle of a right triangle to the ratio of the lengths of any two sides of the triangle (or vice versa).

Any trigonometric function (f), therefore, always satisfies either of the following equations:
$\mathrm{f}(\mathrm{q})=\mathrm{a} / \mathrm{b} \quad$ OR $\mathrm{f}(\mathrm{a} / \mathrm{b})=\mathrm{q}$,
where q is the measure of a certain angle in the triangle, and a and b are the lengths of two specific sides.

This means that

- If the former equation holds, we can choose any right triangle, then take the measurement of one of the non-right angles, and when we evaluate the trigonometric function at that angle, the result will be the ratio of the lengths of two of the triangle's sides.
- However, if the latter equation holds, we can chose any right triangle, then compute the ratio of the lengths of two specific sides, and when we evaluate the trigonometric function at any that ratio, the result will be measure of one of the triangles non-right angles. (These are called inverse trig functions since they do the inverse, or vice-versa, of the previous trig functions.)

This relationship between an angle and side ratios in a right triangle is one of the most important ideas in trigonometry. Furthermore, trigonometric functions work for any right triangle. Hence -- for a right triangle -- if we take the measurement of one of the triangles non-right angles, we can mathematically deduce the ratio of the lengths of any two of the triangle's sides by trig functions. And if we measure any side ratio, we can mathematically deduce the measure of one of the triangle's non-right angles by inverse trig functions. More importantly, if we know the measurement of one of the triangle's angles, and we then use a trigonometric function to determine the ratio of the lengths of two of the triangle's sides, and we happen to know the lengths of one of these sides in the ratio, we can then algebraically determine the length of the other one of these two sides. (i.e. if we determine that $\mathrm{a} / \mathrm{b}=2$, and we know $\mathrm{a}=6$, then we deduce that $\mathrm{b}=3$.)

Since there are three sides and two non-right angles in a right triangle, the trigonometric functions will need a way of specifying which sides are related to which angle. (It is not-so-useful to know that Trai Rashik Bargia Sotra By M.H.Rana
www.matherana.synthasite.com the ratio of the lengths of two sides equals 2 if we do not know which of the three sides we are talking about. Likewise, if we determine that one of the angles is 40°, it would be nice to know of which angle this statement is true.

Under a certain convention, we label the sides as opposite, adjacent, and hypotenuse relative to our angle of interest q. full explanation

As mentioned previously, the first type of trigonometric function, which relates an angle to a side ratio, always satisfies the following equation:
$f(q)=a / b$.
Since given any angle q, there are three ways of choosing the numerator (a), and three ways of choosing the denominator (b), we can create the following nine trigonometric functions:

$f(q)=$ opp/opp	$f(q)=$ opp/adj	$f(q)=$ opp/hyp
$f(q)=a d j /$ opp	$f(q)=\mathrm{adj} / a d j$	$f(q)=a d j /$ hyp
$f(q)=$ hyp/opp	$f(q)=$ hyp/adj	$f(q)=$ hyp/hyp

The three diagonal functions shown in red always equal one. They are degenerate and, therefore, are of no use to us. We therefore remove these degenerate functions and assign labels to the remaining six, usually written in the following order:

sine $(q)=$ opp $/$ hyp	$\operatorname{cosecant}(q)=$ hyp/opp
$\operatorname{cosine}(q)=\mathrm{adj} /$ hyp	$\operatorname{secant}(q)=$ hyp/adj
tangent $(q)=$ opp/adj	$\operatorname{cotangent~}(q)=\operatorname{adj} /$ opp

Furthermore, the functions are usually abbreviated: sine (sin), cosine (cos), tangent (tan) cosecant (csc), secant (sec), and cotangent (cot).

Do not be overwhelmed. By far, the two most important trig functions to remember are sine and cosine. All the other trig functions of the first kind can be derived from these two functions. For example, the functions on the right are merely the multiplicative inverse of the corresponding function on the left (that makes them much less useful). Furthermore, the $\sin (x) / \operatorname{COs}(x)=$ (opp/hyp) / (adj/hyp) $=\mathrm{opp} / \operatorname{adj}=\tan (x)$. Therefore, the tangent function is the same as the quotient of the sine and cosine functions (the tangent function is still fairly handy).

$\operatorname{sine}(q)=\mathrm{opp} /$ hyp	$\operatorname{CSC}(q)=1 / \sin (q)$
$\operatorname{COs}(q)=\operatorname{adj} /$ hyp	$\sec (q)=1 / \operatorname{COs}(q)$
$\tan (q)=\sin (q) / \operatorname{COs}(q)$	$\cot (q)=1 / \tan (q)$

$\operatorname{sine}\left(90^{\circ}-q\right)=\operatorname{cosine}(q)$
$\operatorname{secant}\left(90^{\circ}-\mathrm{q}\right)=\operatorname{cosecant}(\mathrm{q})$
tangent $\left(90^{\circ}-q\right)=\operatorname{cotangent}(q)$
thus justifying the naming convention.
The trig functions evaluate differently depending on the units on q, such as degrees, radians, or grads. For example, $\sin \left(90^{\circ}\right)=1$, while $\sin (90)=0.89399 \ldots$ explanation

Just as we can define trigonometric functions of the form
$f(q)=a / b$
that take a non-right angle as its parameter and return the ratio of the lengths of two triangle sides, we can do the reverse: define trig functions of the form
$f(a / b)=q$
that take the ratio of the lengths of two sides as a parameter and returns the measurement of one of the non-right angles.

I nverse Functions

$\operatorname{arcsine}(o p p / h y p)=q$	$\operatorname{arccosecant(hyp/opp)}=q$
$\operatorname{arccosine}(\operatorname{adj} /$ hyp $)=q$	$\operatorname{arcsecant}(h y p / a d j)=q$
$\operatorname{arctangent}(o p p / a d j)=q$	$\operatorname{arccotangent(adj/opp)}=q$

As before, the functions are usually abbreviated: arcsine (arcsin), arccosine (arccos), arctangent (arctan) arccosecant (arccsc), arcsecant (arcsec), and arccotangent (arccot). According to the standard notation for inverse functions (f^{-1}), you will also often see these written as $\sin ^{-1}$, $\cos -1, \tan ^{-1}$ csc-1, sec ${ }^{-1}$, and $\cot ^{-1}$. Beware: There is another common notation that writes the square of the trig functions, such as $(\sin (x))^{2}$ as $\sin ^{2}(x)$. This can be confusing, for you then might then be lead to think that $\sin ^{-1}(x)=(\sin (x))^{-1}$, which is not true. The negative one superscript here is a special notation that denotes inverse functions (not multiplicative inverses).

20) Math | Algebra | Trig | Unit Modes

Trig Functions: Unit Modes

The trig functions evaluate differently depending on the units on q. For example, $\sin \left(90^{\circ}\right)=1$, while $\sin (90)=0.89399 \ldots$. If there is a degree sign after the angle, the trig function evaluates its parameter as a degree measurement. If there is no unit after the angle, the trig function evaluates its Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,
www.matherana.synthasite.com parameter as a radian measurement. This is because radian measurements are considered to be the "natural" measurements for angles. (Calculus gives us a justification for this. A partial explanation comes from the formula for the area of a circle sector, which is simplest when the angle is in radians).

Calculator note: Many calculators have degree, radian, and grad modes ($360^{\circ}=2 \mathrm{prad}=400$ grad). It is important to have the calculator in the right mode since that mode setting tells the calculator which units to assume for angles when evaluating any of the trigonometric functions. For example, if the calculator is in degree mode, evaluating sine of 90 results in $\underline{1}$. However, the calculator returns $0.89399 \ldots$ when in radian mode. Having the calculator in the wrong mode is a common mistake for beginners, especially those that are only familiar with degree angle measurements.

For those who wish to reconcile the various trig functions that depend on the units used, we can define the degree symbol $\left({ }^{\circ}\right)$ to be the value ($\mathrm{PI} / 180$). Therefore, $\sin \left(90^{\circ}\right)$, for example, is really just an expression for the sine of a radian measurement when the parameter is fully evaluated. As a demonstration, $\sin \left(90^{\circ}\right)=\sin (90(\mathrm{PI} / 180))=\sin (\mathrm{PI} / 2)$. In this way, we only need to tabulate the "natural" radian version of the sine function. (This method is similar to defining percent $\%=(1 / 100)$ in order to relate percents to ratios, such as $50 \%=50(1 / 100)=1 / 2$.)
20)

Trigonometric Tables

(Math | Trig | Tables)

$\underline{\mathrm{PI}}=3.141592 \ldots$ (approximately $22 / 7=3.1428$) radians $=$ degrees \times PI / 180 (deg to rad conversion) degrees $=$ radians $\times 180 / \mathrm{PI}($ rad to deg conversion)

| Rad | Deg | Sin | Cos | Tan | Csc | Sec | Cot | | |
| :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . $\mathbf{0 0 0 0}$ | $\mathbf{0 0}$ | .0000 | 1.0000 | .0000 | ---- | 1.0000 | ---- | $\mathbf{9 0}$ | $\mathbf{1 . 5 7 0 7}$ |
| . $\mathbf{0 1 7 5}$ | $\mathbf{0 1}$ | .0175 | .9998 | .0175 | 57.2987 | 1.0002 | 57.2900 | $\mathbf{8 9}$ | $\mathbf{1 . 5 5 3 3}$ |
| . $\mathbf{0 3 4 9}$ | $\mathbf{0 2}$ | .0349 | .9994 | .0349 | 28.6537 | 1.0006 | 28.6363 | $\mathbf{8 8}$ | $\mathbf{1 . 5 3 5 9}$ |
| . $\mathbf{0 5 2 4}$ | $\mathbf{0 3}$ | .0523 | .9986 | .0524 | 19.1073 | 1.0014 | 19.0811 | $\mathbf{8 7}$ | $\mathbf{1 . 5 1 8 4}$ |
| . $\mathbf{0 6 9 8}$ | $\mathbf{0 4}$ | .0698 | .9976 | .0699 | 14.3356 | 1.0024 | 14.3007 | $\mathbf{8 6}$ | $\mathbf{1 . 5 0 1 0}$ |
| . $\mathbf{0 8 7 3}$ | $\mathbf{0 5}$ | .0872 | .9962 | .0875 | 11.4737 | 1.0038 | 11.4301 | $\mathbf{8 5}$ | $\mathbf{1 . 4 8 3 5}$ |
| . $\mathbf{1 0 4 7}$ | $\mathbf{0 6}$ | .1045 | .9945 | .1051 | 9.5668 | 1.0055 | 9.5144 | $\mathbf{8 4}$ | $\mathbf{1 . 4 6 6 1}$ |
| . $\mathbf{1 2 2 2}$ | $\mathbf{0 7}$ | .1219 | .9925 | .1228 | 8.2055 | 1.0075 | 8.1443 | $\mathbf{8 3}$ | $\mathbf{1 . 4 4 8 6}$ |
| . $\mathbf{1 3 9 6}$ | $\mathbf{0 8}$ | .1392 | .9903 | .1405 | 7.1853 | 1.0098 | 7.1154 | $\mathbf{8 2}$ | $\mathbf{1 . 4 3 1 2}$ |
| . $\mathbf{1 5 7 1}$ | $\mathbf{0 9}$ | .1564 | .9877 | .1584 | 6.3925 | 1.0125 | 6.3138 | $\mathbf{8 1}$ | $\mathbf{1 . 4 1 3 7}$ |

Trai Rashik Bargia Sotra By M.H.Rana
www.matherana.synthasite.com

. 1745	10	. 1736	. 9848	. 1763	5.7588	1.0154	5.6713	80	1.3953
. 1920	11	. 1908	. 9816	. 1944	5.2408	1.0187	5.1446	79	1.3788
. 2094	12	. 2079	. 9781	. 2126	4.8097	1.0223	4.7046	78	1.3614
. 2269	13	. 2250	. 9744	. 2309	4.4454	1.0263	4.3315	77	1.3439
. 2443	14	2419	. 9703	. 2493	4.1336	1.0306	4.0108	6	265
. 2618	15	. 2588	. 9659	. 2679	3.8637	1.0353	3.7321	75	1.3090
. 2793	16	. 2756	. 9613	2867	3.6280	1.0403	3.4874	74	1.2915
. 2967	17	. 292	. 9563	. 3057	3.4203	1.0457	3.2709	73	1.2741
. 3142	18	. 3090	. 9511	. 3249	3.2361	1.0515	3.0777	72	1.2566
. 3316	19	. 3256	. 9455	. 3443	3.0716	1.0576	2.9042	1	1.2392
. 3491	20	. 3420	. 9397	. 3640	2.9238	1.064	2.74	70	1.2217
. 3665	21	. 3584	. 9336	. 3839	2.7904	1.0711	2.6051	69	1.2043
. 3840	22	37	. 92	4040	2.6695	1.0785	2.4751	68	1.1868
. 4014	23	. 390	. 9205	. 424	2.5593	1.086	2.3559	67	1.1694
. 4189	24	4067	. 9135	. 4452	2.4586	1.0946	2.2460	66	1.1519
. 4363	25	. 4226	. 9063	. 4663	2.3662	1.1034	2.1445	65	1.1345
. 4538	26	438	. 898	487	2.281	1.112	2.0503	64	11170
. 4712	27	. 4540	. 8910	. 5095	2.2027	1.1223	1.9626	63	1.0996
. 4887	28	. 4695	. 8829	. 5317	2.1301	1.1326	1.8807	62	1.0821
. 5061	29	. 4848	. 8746	. 554	2.0627	1.143	1.8040	61	1.0647
. 5236	30	5000	. 8660	. 577	2.0000	1.1547	1.7321	60	1.0472
. 5411	31	. 5150	. 8572	. 6009	1.9416	1.1666	1.6643	59	1.0297
. 5585	32	. 5299	. 8480	. 6249	1.8871	1.1792	1.6003	58	1.0123
. 5760	33	. 5446	. 8387	. 6494	1.8361	1.1924	1.5399	57	. 9948
. 5934	34	. 5592	. 8290	. 6745	1.7883	1.2062	1.4826	56	. 9774
. 6109	35	. 5736	. 8192	. 7002	1.7434	1.2208	1.4281	55	. 9599
. 6283	36	. 5878	. 8090	. 7265	1.7013	1.2361	1.3764	54	. 9425
. 6458	37	. 6018	. 7986	. 7536	1.6616	1.2521	1.3270	53	. 9250
. 6632	38	. 6157	. 7880	. 7813	1.6243	1.2690	1.2799	52	. 9076
. 6807	39	. 6293	. 7771	. 8098	1.5890	1.2868	1.2349	51	. 8901
. 6981	40	. 6428	. 7660	. 8391	1.5557	1.3054	1.1918	50	. 8727
. 7156	41	. 6561	. 7547	. 8693	1.5243	1.3250	1.1504	49	. 8552
. 7330	42	. 6691	. 7431	. 9004	1.4945	1.3456	1.1106	48	. 8378
. 7505	43	. 6820	. 7314	. 9325	1.4663	1.3673	1.0724	47	. 8203
. 7679	44	. 6947	. 7193	. 9657	1.4396	1.3902	1.0355	46	. 8029
. 7854	45	. 7071	. 7071	1.0000	1.4142	1.4142	1.0000	45	. 7854

Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,
www.matherana.synthasite.com

	COs	Sin	Cot	Sec	CSC	Tan	Deg	Rad

Trig Table of Common Angles

angle (degrees)	0	30	45	60	90	120	135	150	180	210	225	240	270	300	315	330	$\begin{aligned} & 360 \\ & =0 \end{aligned}$
angle (radians)	0	PI/ 6	PI/ 4	PI/ 3	PI/ 2	2/ 3PI	3/4PI	5/ 6PI	PI	7/ 6PI	5/ 4PI	4/ 3PI	3/ 2PI	5/ 3PI	7/ 4PI	11/ 6PI	$\begin{aligned} & \text { 2PI } \\ & =0 \end{aligned}$
$\sin (\mathrm{a})$	$\sqrt{5}$	$\sqrt{(1 / 4)}$	$\sqrt[{\sqrt{2}}]{(2 / 4)}$	$\sqrt[5]{ }(3 / 4)$	$\sqrt[{\sqrt{5}}]{(4 / 4)}$	$\sqrt{7}$	$\sqrt{\text { 厄 }}$	$\sqrt{(1 / 4)}$	$(0 / 4)$	$\begin{aligned} & -\sqrt[5]{ } \\ & (1 / 4) \end{aligned}$	$\begin{aligned} & -\sqrt{ } \\ & (2 / 4) \end{aligned}$	$\begin{aligned} & -\sqrt[5]{ } \\ & (3 / 4) \end{aligned}$	$\begin{aligned} & -\sqrt[5]{ } \\ & (4 / 4) \end{aligned}$	$\begin{aligned} & -\sqrt{ } \\ & (3 / 4) \end{aligned}$	$\begin{aligned} & -\sqrt[5]{ } \\ & (2 / 4) \end{aligned}$	$-\sqrt{(1 / 4)}$	$\sqrt{(0 / 4)}$
COs(a)	$\sqrt{5}$	$(3 / 4)$	$\sqrt{(2 / 4)}$	$\sqrt[5]{(1 / 4)}$	$\sqrt[4]{(0 / 4)}$	$\begin{aligned} & -\sqrt{5} \\ & (1 / 4) \end{aligned}$	$\begin{array}{\|l} \hline-4 \\ (2 / 4) \end{array}$	$\begin{aligned} & -\sqrt{ } \\ & (3 / 4) \end{aligned}$	$\begin{aligned} & -\sqrt{ } \\ & (4 / 4) \end{aligned}$	$\begin{aligned} & -\sqrt[4]{ } \\ & (3 / 4) \end{aligned}$	$\begin{aligned} & -\sqrt{ } \\ & (2 / 4) \end{aligned}$	$\begin{aligned} & -\sqrt[4]{ } \\ & (1 / 4) \end{aligned}$	$\sqrt{(0 / 4)}$	$\sqrt{(1 / 4)}$	$\sqrt{(2 / 4)}$	$\sqrt{(3 / 4)}$	$\sqrt{5}$
$\tan (\mathrm{a})$	$\sqrt{5}$	$(1 / 3)$	$\sqrt{5}$ $(2 / 2)$	$\sqrt{ }$ $(3 / 1)$	$\sqrt[5]{(4 / 0)}$	$\begin{aligned} & -\sqrt{5} \\ & (3 / 1) \end{aligned}$	$\begin{aligned} & -\sqrt{7} \\ & (2 / 2) \end{aligned}$	$\begin{aligned} & \hline-\sqrt{7} \\ & (1 / 3) \end{aligned}$	$\begin{aligned} & -\sqrt{ } \\ & (0 / 4) \end{aligned}$	$\sqrt{(1 / 3)}$	$\sqrt{(2 / 2)}$	$\sqrt{ }(3 / 1)$	$\sqrt{ }$	$\begin{aligned} & -\sqrt{7} \\ & (3 / 1) \end{aligned}$	$\begin{aligned} & -\sqrt{7} \\ & (2 / 2) \end{aligned}$	$-\sqrt{(1 / 3)}$	$\sqrt{(0 / 4)}$

Those with a zero in the denominator are undefined. They are included solely to demonstrate the pattern.

21) Trig Functions: The Functions

Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,
www.matherana.synthasite.com

sine $(\mathrm{q})=\mathrm{opp} /$ hyp	$\operatorname{cosecant}(\mathrm{q})=$ hyp/opp
$\operatorname{cosine}(\mathrm{q})=\mathrm{adj} /$ hyp	$\operatorname{secant}(\mathrm{q})=$ hyp $/ \mathrm{adj}$
tangent $(\mathrm{q})=$ opp/adj	$\operatorname{cotangent}(\mathrm{q})=\mathrm{adj} /$ opp

The functions are usually abbreviated: sine (\sin), cosine (cos), tangent (tan) cosecant (csc), secant (sec), and cotangent (cot).

It is often simpler to memorize the the trig functions in terms of only sine and cosine:

$\operatorname{sine}(q)=\mathrm{opp} /$ hyp	$\csc (\mathrm{q})=1 / \sin (\mathrm{q})$
$\cos (\mathrm{q})=\mathrm{adj} /$ hyp	$\sec (\mathrm{q})=1 / \cos (\mathrm{q})$
$\tan (\mathrm{q})=\sin (\mathrm{q}) / \cos (\mathrm{q})$	$\cot (\mathrm{q})=1 / \tan (\mathrm{q})$

Inverse Functions

$\operatorname{arcsine}(o p p /$ hyp $)=q$	$\operatorname{arccosecant}($ hyp $/ o p p)=q$
$\operatorname{arccosine}(\operatorname{adj} /$ hyp $)=q$	$\operatorname{arcsecant}($ hyp $/ \operatorname{adj})=q$
$\operatorname{arctangent}(\mathrm{opp} / \mathrm{adj})=\mathrm{q}$	$\operatorname{arccotangent}(\operatorname{adj} /$ opp $)=q$

The functions are usually abbreviated:
arcsine (arcsin)
arccosine (arccos)
arctangent (arctan)
arccosecant (arccsc)
arcsecant (arcsec)
arccotangent (arccot).
According to the standard notation for inverse functions $\left(f^{-1}\right)$, you will also often see these written as $\sin ^{-1}, \cos -1, \tan ^{-1} \operatorname{arccsc}^{-1}, \operatorname{arcsec}^{-1}$, and $\operatorname{arccot}^{-1}$. Beware, though, there is another common notation that writes the square of the trig functions, such as $(\sin (x))^{2}$ as $\sin ^{2}(x)$. This can be confusing, for you then might then be lead to think that $\sin ^{-1}(x)=(\sin (x))^{-1}$, which is not true. The negative one superscript here is a special notation that denotes inverse functions (not multiplicative inverses).

See also: overview.

22)

Proof: Hyperbolic Trigonometric Identities

(Math | Trig| Hyperbolas

Hyperbolic Definitions

Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,
$\sinh (x)=\left(e^{x}-e^{-x}\right) / 2$
$\operatorname{csch}(x)=1 / \sinh (x)=2 /\left(e^{x}-e^{-x}\right)$
$\cosh (x)=\left(e^{x}+e^{-x}\right) / 2$
$\operatorname{sech}(x)=1 / \cosh (x)=2 /\left(e^{x}+e^{-x}\right)$
$\tanh (x)=\sinh (x) / \cosh (x)=\left(e^{x}-e^{-x}\right) /\left(e^{x}+e^{-x}\right)$
$\operatorname{coth}(x)=1 / \tanh (x)=\left(e^{x}+e^{-x}\right) /\left(e^{x}-e^{-x}\right)$
$\cosh ^{2}(x)-\sinh ^{2}(x)=1$
$\tanh ^{2}(x)+\operatorname{sech}^{2}(x)=1$
$\operatorname{coth}^{2}(x)-\operatorname{csch}^{2}(x)=1$

I nverse Hyperbolic Definitions

```
arcsinh(z) = ln(z+\sqrt{}{(z}\mp@subsup{z}{}{2}+1))
arccosh(z) = ln(z \pm\sqrt{}{(z2}-1))
arctanh(z) = 1/2 ln((1+z)/(1-z))
arccsch(z) = ln((1+\sqrt{}{(1+z}\mp@subsup{}{}{2}))/z )
arcsech(z) = In((1\pm\sqrt{}{(1-z}\mp@subsup{}{}{2})})/z
arccoth(z) = 1/2 In((z+1)/(z-1))
```


Relations to Trigonometric Functions

$\sinh (z)=-i \sin (i z)$
$\operatorname{csch}(z)=\mathrm{i} \csc (i z)$
$\cosh (z)=\cos (i z)$
$\operatorname{sech}(z)=\sec (i z)$
$\tanh (z)=-i \tan (i z)$
$\operatorname{coth}(z)=i \cot (i z)$
23)

Trigonometric I dentities

(Math | Trig | Identities)

$\sin ($ theta $)=\mathrm{a} / \mathrm{c}$	$\csc ($ theta $=1 / \sin ($ theta $=\mathrm{c} / \mathrm{a}$
$\cos ($ theta $)=\mathrm{b} / \mathrm{c}$	$\sec ($ theta $)=1 / \cos$ (theta) $=\mathrm{c} / \mathrm{b}$
$\tan ($ theta $)=\sin ($ theta $) / \cos$ (theta) $=\mathrm{a} / \mathrm{b}$	$\cot ($ theta $)=1 / \tan$ (theta) $=\mathrm{b} / \mathrm{a}$

$$
\begin{aligned}
& \sin (-x)=-\sin (x) \\
& \csc (-x)=-\csc (x) \\
& \cos (-x)=\cos (x) \\
& \sec (-x)=\sec (x) \\
& \tan (-x)=-\tan (x) \\
& \cot (-x)=-\cot (x)
\end{aligned}
$$

$$
\sin ^{\wedge}(x)+\cos ^{\wedge}(x)=1 \quad \tan ^{\wedge}(x)+1=\sec ^{\wedge}(x) \quad \begin{aligned}
& \cot ^{\wedge}(x)+1= \\
& \csc ^{\wedge}(x)
\end{aligned}
$$

$\sin (x \pm y)=\sin x \cos y \pm \cos x \sin y$
$\cos (x \not \pm y)=\cos x \cos y \mp \sin x \sin y$
$\tan (\mathrm{x} \pm \mathrm{y})=(\tan \mathrm{x} \pm \tan \mathrm{y}) /(1 \boldsymbol{7} \tan \mathrm{x} \tan \mathrm{y})$
$\sin (2 x)=2 \sin x \cos x$
$\cos (2 x)=\cos ^{\wedge}(x)-\sin ^{\wedge}(x)=2 \cos ^{\wedge}(x)-1=1-2 \sin ^{\wedge}(x)$
$\tan (2 x)=2 \tan (x) /\left(1-\tan ^{\wedge}(x)\right)$
$\sin ^{\wedge}(x)=1 / 2-1 / 2 \cos (2 x)$

Trai Rashik Bargia Sotra By M.H.Rana
$\cos ^{\wedge}(x)=1 / 2+1 / 2 \cos (2 x)$
$\sin x-\sin y=2 \sin ((x-y) / 2) \cos ((x+y) / 2)$
$\cos x-\cos y=-2 \sin ((x-y) / 2) \sin ((x+y) / 2)$
Trig Table of Common Angles

| angle | $\mathbf{0}$ | $\mathbf{3 0}$ | $\mathbf{4 5}$ | $\mathbf{6 0}$ | $\mathbf{9 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\boldsymbol{\operatorname { s i n }}^{\wedge} \mathbf{(a)}$ | $0 / 4$ | $1 / 4$ | $2 / 4$ | $3 / 4$ | $4 / 4$ |
| $\boldsymbol{\operatorname { c o s }}^{\wedge} \mathbf{(a)}$ | $4 / 4$ | $3 / 4$ | $2 / 4$ | $1 / 4$ | $0 / 4$ |
| $\boldsymbol{\operatorname { t a n }}^{\wedge} \mathbf{(a)}$ | $0 / 4$ | $1 / 3$ | $2 / 2$ | $3 / 1$ | $\mathbf{4 / 0}$ |

Given Triangle abc, with angles A, B, C; a is opposite to A, b opposite B, c opposite C :
$a / \sin (A)=b / \sin (B)=c / \sin (C)$ (Law of Sines)
$c^{\wedge}=a^{\wedge}+b^{\wedge}-2 a b \cos (C)$
$b^{\wedge}=a^{\wedge^{2}}+c^{\wedge^{2}}-2 a c \cos (B)$
(Law of Cosines)
$a^{\wedge 2}=b^{\wedge}+c^{\wedge 2}-2 b c \cos (A)$
$(a-b) /(a+b)=\tan [(A-B) / 2] / \tan [(A+B) / 2]$ (Law of Tangents)

Calculus

24)

Proof: Constant Rule

(Math | Calculus | Derivatives | Identities | Constant Rule

$$
\frac{\frac{d}{d x}}{d^{2}} f(x)=c^{\frac{d}{d}} f(x)
$$

Proof of ${ }^{\frac{d}{ㄹ}} C f(x)=c^{\frac{d}{d}} f(x)$ from the definition
We can use the definition of the derivative:
$\frac{\mathbf{d}^{\mathbf{d}}}{} f(x)=\lim _{d->0} \frac{f(x+d)-f(x)}{d}$
Therefore, ${ }^{\frac{d}{d}} \mathrm{C} f(x)$ can be written as such:
${ }^{\frac{d}{d x}} \mathbf{C} f(\mathbf{x})=\lim _{\mathrm{d}-\mathrm{>}} \frac{\operatorname{cf}(x+d)-c f(x)}{d}$
$c \lim _{d->0} \frac{f(x+d)-f(x)}{D}$
$=c * \frac{{ }^{\frac{d}{d}}}{} f(x)$
25) (Math | Calculus | Derivatives | Identities | Constant Rule)

Proof of ${ }^{\frac{d}{{ }^{\frac{d}{2}}}} \mathrm{c} f(x)=c^{\frac{d}{d^{\frac{d}{d}}}(x) \text { from the definition }}$
We can use the definition of the derivative:
$\frac{d^{d}}{d} f(x)=\lim _{d->0} \frac{f(x+d)-f(x)}{d}$
Therefore, ${ }^{\frac{d_{d}^{d}}{d x}} f(x)$ can be written as such:

Young Scientist M.H.Rana, www.matherana.synthasite.com
$=c *^{\frac{d^{\frac{d}{d}}}{}}(x)$
26)

Differentiation I dentities

(Math | Calculus | Derivatives | Identities)

Definitions of the Derivative:

$d f / d x=\lim (d x->0)(f(x+d x)-f(x)) / d x$ (right sided)
$d f / d x=\lim (d x->0)(f(x)-f(x-d x)) / d x$ (left sided)
$d f / d x=\lim (d x->0)(f(x+d x)-f(x-d x)) /(2 d x)$ (both sided)
$\frac{d}{d x} \int_{a f(t)}^{x}$
$\mathrm{af}(\mathrm{t}) \mathrm{dt}=\mathrm{f}(\mathrm{x})$ (Fundamental Theorem for Derivatives)
${ }^{\frac{d}{d}} \mathrm{C} f(x)=\mathrm{c}$ \{Rant
$\stackrel{\underline{d}}{d}_{\boldsymbol{d}_{f}}(\mathrm{x})$ (c is a constant)
[[

Proof: Constant Rule

$$
{ }^{\frac{d}{d x}} c f(x)=c^{\frac{d}{d^{4}}} f(x)
$$

(Math | Calculus | Derivatives | Identities | Constant Rule)

Proof of ${ }^{\frac{d}{M^{x}}} \mathrm{C} f(x)=c^{\frac{d}{d x}} f(x)$ from the definition
We can use the definition of the derivative:
$\frac{\mathbf{d}}{d i} f(x)=\lim _{d-->0} \frac{f(x+d)-f(x)}{d}$
Therefore, ${ }^{\frac{d}{d x}} \mathrm{c} f(x)$ can be written as such:

Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana, d-->0 \qquad
d
$\left.=c * \frac{{ }^{\frac{d}{d}}}{\mathrm{~d}}(\mathrm{x}) \mathrm{J}\right]$

[[
 Proof: Sum Rule

(Math | Calculus | Derivatives | Identities | Sum Rule)

Proof of $\frac{d}{d}[f(x)+g(x)]=\frac{\frac{d}{d}}{d}(x)+\frac{\frac{d}{d x}}{d} g(x)$ from the definition
We can use the definition of the derivative:
$\frac{d}{d i} f(x)=\lim _{d-->0} \frac{f(x+d)-f(x)}{d}$
Therefore, ${ }^{\frac{{ }^{\frac{d}{x}}}{}}[f(x)+g(x)]$ can be written as such:

$$
\begin{aligned}
\frac{d}{d}[f(x)+g(x)]= & \lim _{d-->0} \frac{[f(x+d)+g(x+d)]-[f(x)+g(x)]}{d} \\
& =\lim _{d->0}\left(\frac{[f(x+d)-}{f(x)]}\right. \\
& =\lim _{d->0} \frac{f(x+d)-f(x)}{d}
\end{aligned}
$$

]]

Trai Rashik Bargia Sotra By M.H.Rana

Chain Rule

(Math | Calculus | Derivatives | Identities | Chain Rule)

```
\frac{d}{d}
```

Proof of $\frac{\frac{d}{d}}{{ }^{\frac{d}{}}} f(g(x))=\frac{d}{d} f(g) * \frac{d}{d x} g(x)$ from the definition
We can use the definition of the derivative:
$\frac{d}{d} f(x)=\lim _{d->0} \frac{f(x+d)-f(x)}{d}$

${ }^{d}$
$d_{f}(g(x))=d f / d x=(f(g(x+d)-f(g(x)) / d$
$d f / d x * 1 /(d g / d x)=[(f(g(x+d)-f(g(x)) / d] *[d /(g(x+d)-g(x))]$
$=(f(g(x+d))-f(g(x))) /(g(x+d)-g(x))=d f / d g$
$\left.d f / d x=d f / d g{ }^{*} d g / d x[]\right]$
]]
${ }^{\frac{d^{\mathbf{d}}}{}}(x) g(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$ (product rule)
$\frac{\mathbf{d}_{\underline{d}}^{\mathbf{d}^{\mathbf{d}}}}{}(x) / g(x)=\left(f^{\prime}(x) g(x)-f(x) g^{\prime}(x)\right) / g^{\wedge^{2}}(x)$ (quotient rule)

Partial Differentiation I dentities

if $f(x(r, s), y(r, s))$
$\mathrm{df} / \mathrm{dr}=\mathrm{df} / \mathrm{dx} * \mathrm{dx} / \mathrm{DR}+\mathrm{df} / \mathrm{dy} * \mathrm{dy} / \mathrm{DR}$
$d f / d s=d f / d x * d x / D s+d f / d y * d y / D s$
if $f(x(r, s))$
$\mathrm{df} / \mathrm{DR}=\mathrm{df} / \mathrm{dx} * \mathrm{dx} / \mathrm{DR}$
Trai Rashik Bargia Sotra By M.H.Rana
$\mathrm{df} / \mathrm{Ds}=\mathrm{df} / \mathrm{dx} * \mathrm{dx} / \mathrm{Ds}$
directional derivative
$d f(x, y) / d($ Xi sub $a)=f 1(x, y) \cos (a)+f 2(x, y) \sin (a)$
(Xi sub a) $=$ angle counterclockwise from pos. x axis.
27)

Integral Identities

(Math | Calculus | Integrals | Identities)
Formal I ntegral Definition:

$a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b$
$d=\max \left(x_{1}-x_{0}, x_{2}-x_{1}, \ldots, x_{n}-x_{(n-1)}\right)$
$x_{(k-1)}<=X_{(k)}<=x_{(k)} \quad k=1,2, \ldots, n$
$\int_{a F}^{b}$
$a F^{\prime}(x) d x=F(b)-F(a)$ (Fundamental Theorem for integrals of derivatives)
$\int a f(x) d x=a \int f(x) d x$ (if \underline{a} is constant)
$\int f(x)+g(x) d x=\int f(x) d x+\int g(x) d x$
$\int_{a f(x) d x}^{b}=\int f(x) d x \mid(a b)$
$\int_{a f(x) d x}^{b}+\int_{b f(x) d x=}^{\mathbf{c}}=\mathbf{a} \mathbf{a}(x) d x$
$\int f(u) d u / d x d x=\int f(u) d u$ (integration by substitution)
28)

Series Convergence Tests

(Math | Calculus | Series Expansions | Convergence Tests)
Definition of Convergence and Divergence in Series

Operations on Convergent Series

If $\sum_{a_{n}=A, \text { and }} \sum_{b_{n}=B \text {, then the following also converge as indicated: }}$
$\sum_{\sum_{n}}\left(a_{n}=c A\right.$
$\left(a_{n}-b_{n}\right)=A+B$
$\left.\sum_{n}\right)=A$

Alphabetical Listing of Convergence Tests

Absolute Convergence

If the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then the series $\sum_{n=1}^{\infty} a_{n}$ also converges.
Alternating Series Test
If for all n, a_{n} is positive, non-increasing (i.e. $0<a_{n+1}<=a_{n}$), and approaching zero, then the alternating series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ and $\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$ both converge.
If the alternating series converges, then the remainder $R_{N}=S-S_{N}$ (where S is the exact sum of the infinite series and S_{N} is the sum of the first N terms of the series) is bounded by $\left|R_{N}\right|<=a_{N+1}$

Deleting the first N Terms

If N is a positive integer, then the series
$\sum_{n=1}^{\infty} \sum_{a_{n} \text { and }}^{\infty} \sum_{n=N+1}^{\infty}$
both converge or both diverge.
Direct Comparison Test

Young Scientist M.H.Rana,
www.matherana.synthasite.com
If $0<=a_{n}<=b_{n}$ for all n greater than some positive integer N , then the following rules apply:
$\sum_{\text {If }}^{\infty} \sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
$\sum_{\text {If }}^{\infty} \sum_{n=1}^{\infty} a_{n}$ diverges, then ${ }_{n=1}^{\infty} b_{n}$ diverges.

Geometric Series Convergence

The geometric series is given by
$\sum_{n=0}^{\infty} a r^{n}=a+a r+a r^{2}+a r^{3}+\ldots$
If $|r|<1$ then the following geometric series converges to a / ($1-r$).
If $|r|>=1$ then the above geometric series diverges.

Integral Test
If for all $n>=1, f(n)=a_{n}$, and f is positive, continuous, and decreasing then
$\sum_{n=1}^{\infty} a_{n}$ and $\int_{1 a_{n}}^{\infty}$
either both converge or both diverge.
If the above series converges, then the remainder $R_{N}=S-S_{N}$ (where S is the exact sum of the infinite series and S_{N} is the sum of the first N terms of the series) is bounded by $0<=R_{N}<=\int(N . . \infty) f(x) d x$.
Limit Comparison Test
If $\lim (n-->\infty)\left(a_{n} / b_{n}\right)=L$,
where $a_{n}, b_{n}>0$ and L is finite and positive,
then the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ either both converge or both diverge.
$\mathrm{n}^{\text {th }}$-Term Test for Divergence
If the sequence $\left\{a_{n}\right\}$ does not converge to zero, then the series $\sum_{n=1}^{\infty} a_{n}$ diverges.
p-Series Convergence
The p-series is given by
${ }^{\infty}$
$\sum_{n=1} 1 / n^{p}=1 / 1^{p}+1 / 2^{p}+1 / 3^{p}+\ldots$
where $p>0$ by definition.
If $p>1$, then the series converges.
If $0<p<=1$ then the series diverges.
Ratio Test
Trai Rashik Bargia Sotra By M.H.Rana

If for all $\mathrm{n}, \mathrm{n} \neq 0$, then the following rules apply:
Let $L=\lim (n-->\infty)\left|a_{n+1} / a_{n}\right|$.
If $L<1$, then the series $\sum_{n=1} a_{n}$ converges.
If $L>1$, then the series $\sum_{n=1}^{>} a_{n}$ diverges.
If $L=1$, then the test in inconclusive.
Root Test
Let $L=\lim (n-->\infty)\left|a_{n}\right|_{\infty}^{1 / n}$.
If $L<1$, then the series $\sum_{\substack{n=1 \\ m}} a_{n}$ converges.
If $L>1$, then the series $\sum_{n=1}^{\infty} a_{n}$ diverges.
If $L=1$, then the test in inconclusive.
Taylor Series Convergence
If f has derivatives of all orders in an interval I centered at c , then the Taylor series converges as indicated:
$\sum_{n=0}^{\infty}(1 / n!) f^{(n)}(c)(x-c)^{n}=f(x)$
if and only if $\lim (n-->\infty) R N=0$ for all x in I.
The remainder $R_{N}=S-S_{N}$ of the Taylor series (where S is the exact sum of the infinite series and S_{N} is the sum of the first N terms of the series) is equal to $(1 /(n+1)!)^{(n+1)}(z)(x-c)^{n+1}$, where z is some constant between x and c.

29)

Series Properties

(Math | Calculus | Series Expansions | Properties)

Semiformal Definition of a "Series":

A series $\sum_{n=a} a_{n}$ is the indicated sum of all values of a_{n} when \underline{n} is set to each integer from \underline{a} to \underline{b} inclusive; namely, the indicated sum of the values $a_{a}+A A_{+1}+A A_{+2}+\ldots+a_{b-1}+a_{b}$.

Definition of the "Sum of the Series":

The "sum of the series" is the actual result when all the terms of the series are summed.
Note the difference: " $1+2+3$ " is an example of a "series," but " 6 " is the actual "sum of the series."

Algebraic Definition:

$\sum_{n=a}^{b} a_{n}=A A+A A_{+1}+A A_{+2}+\ldots+A B-1+A B$

Young Scientist M.H.Rana,

Summation Arithmetic:

$\sum_{n=a}^{b} c a_{n}=c \sum_{n=a}^{b} a_{n}($ constant c)
$\sum_{n=a}^{b} a_{n}+\sum_{n=a}^{b} b_{n}=\sum_{n=a}^{b} a_{n}+b_{n}$
$\sum_{n=a}^{b} \sum_{n}^{b} \sum_{n=a}^{b} b_{n}=\sum_{n=a}^{b} a_{n}-b_{n}$

Summation I dentities on the Bounds:

$$
\begin{aligned}
& \sum_{n=a}^{b} a_{n}+\sum_{n=b+1}^{c}=\sum_{n=a}^{c} \\
& \sum_{a_{n}}^{b}=\sum_{a-c}^{b-c} \\
& \mathrm{n}=\mathrm{a} \quad \mathrm{n}=\mathrm{a}-\mathrm{c} \\
& \sum_{a_{n}}^{b} \sum_{a_{n c}}^{b / c} \\
& n=a \quad n=a / c \\
& \sum_{n=a}^{b} \sum_{n=g(a)}^{g(b)}
\end{aligned}
$$

30)

Proof: Sum Rule

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{\frac{d}{d}}{d^{2}} f(x)+{ }^{\frac{d}{d}} g(x)
$$

(Math | Calculus | Derivatives | Identities | Sum Rule)

Proof of $\frac{\frac{d}{d}}{\frac{d}{x}}[f(x)+g(x)]=\frac{\frac{d}{d}}{d x}(x)+\frac{\frac{d}{d x}}{d}(x)$ from the definition
Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,
We can use the definition of the derivative:
$\frac{d}{d i} f(x)=\lim _{d->0} \frac{f(x+d)-f(x)}{d}$
Therefore, ${ }^{\frac{d}{d x}}[f(x)+g(x)]$ can be written as such:

$$
\begin{aligned}
\frac{d}{d x}[f(x)+g(x)]= & \lim _{d->0} \frac{[f(x+d)+g(x+d)]-[f(x)+g(x)]}{d} \\
& =\lim _{d->0}\left(\frac{[f(x+d)-}{f(x)]}\right. \\
& =\lim _{d \rightarrow>0} \frac{f(x+d)-f(x)}{d}
\end{aligned}
$$

31)

Table of Integrals

(Math | Calculus | Integrals | Table Of)

Power of x.

| $\int_{x^{n} d x=x^{(n+1)} /(n+1)+C}$ |
| :--- | :--- |
| $(n \neq-1)$ Proof | $\int_{1 / x d x=\ln |x|+C}$

Exponential / Logarithmic

$\int_{\mathrm{e}^{\mathrm{x}}} d x=\mathrm{e}^{\mathrm{x}}+\mathrm{C}$ Proof	$\mathrm{b}^{\mathrm{x}} d x=\mathrm{b}^{\mathrm{x}} / \ln (\mathrm{b})+\mathrm{C}$ Proof, $\underline{\text { Tip! }}$ $\int_{\ln (\mathrm{x})} d x=\mathrm{ln}(\mathrm{x})-\mathrm{x}+\mathrm{C}$ Proof

Trigonometric

$\int_{\int_{\sin x} x d x=-\cos x+C} \quad$| $\int_{\operatorname{Csc} x d x}=-\ln \|\operatorname{CsC} x+\cot x\|+C$ |
| :--- |
| Proof |

Trai Rashik Bargia Sotra By M.H.Rana

$\int_{\text {Proof }} \cos x d x=\sin x+C$	$\int_{\text {Proof }} \sec x d x=\ln \|\sec x+\tan x\|+C$
$\int_{\text {Proof }} x d x=-\ln \|\operatorname{COs} x\|+C$	$\int_{\cot x} d x=\ln \|\sin x\|+C$

Trigonometric Result

$\int_{\text {Proof }} \cos x d x=\sin x+C$	$\int_{\text {Proof }} \operatorname{CSC} x \cot x d x=-\operatorname{CsC} x+C$
$\int_{\sin x d x}=\cos x+C$	$\int_{\text {Proof }} \operatorname{sen} x d x=\sec x+C$
$\int_{\sec ^{2} x d x=\tan x+C}$	$\int_{\text {Proof }} \csc ^{2} x d x=-\cot x+C$

Inverse Trigonometric

\square
Inverse Trigonometric Result

$\int \frac{d x}{\sqrt{\left(1-x^{2}\right)}=\arcsin x+C}$	Useful I dentities $\arccos x=\pi / 2-\arcsin x$ $(-1<=x<=1)$
$\int \frac{d x}{x \sqrt{(}\left(x^{2}-1\right)}=\operatorname{arcsec}\|x\|+C$	$\operatorname{arccsc} x=\pi / 2-\operatorname{arcsec} x$ $(\|x\|>=1)$ $\operatorname{arccot} x=\pi / 2-\arctan x$ $($ for all $x)$
$\int d x=\arctan x+C$	

Hyperbolic

$\int_{\text {Proof }} x d x=\cosh x+C$	$\int_{\text {Proof }} \operatorname{csch} x d x=\ln \|\tanh (x / 2)\|+C$
$\int_{\text {Proof }} \cosh x d x=\sinh x+C$	$\int \operatorname{sech} x d x=\arctan (\sinh x)+C$
$\int_{\text {Proof }} \tanh x d x=\ln (\cosh x)+C$	$\int_{\operatorname{coth} x} x d x=\ln \|\sinh x\|+C$

Click on Proof for a proof/discussion of a theorem.

To solve a more complicated integral, see The Integrator at http://integrals.wolfram.com/
32)

Chain Rule

(Math | Calculus | Derivatives | Identities | Chain Rule)

```
\frac{d}{d}
```

Proof of $\frac{d}{d x} f(g(x))=\frac{d}{d r} f(g){ }^{\frac{d}{d x}} g(x)$ from the definition
We can use the definition of the derivative:
$\frac{d}{d}_{f(x)}=\lim _{d->0} \frac{f(x+d)-f(x)}{d}$
Therefore, ${ }^{\frac{d}{d x}} \mathrm{f}(\mathrm{g}(\mathrm{x}))$ can be written as such:

Young Scientist M.H.Rana,
d
${ }^{\mathbf{*}} \mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{df} / \mathrm{dx}=(\mathrm{f}(\mathrm{g}(\mathrm{x}+\mathrm{d})-\mathrm{f}(\mathrm{g}(\mathrm{x})) / \mathrm{d}$
$d f / d x$ * $1 /(d g / d x)=[(f(g(x+d)-f(g(x)) / d] *[d /(g(x+d)-g(x))]$
$=(f(g(x+d))-f(g(x))) /(g(x+d)-g(x))=d f / d g$
$d f / d x=d f / d g * d g / d x$
33)

Derivatives: Min, Max, Critical Points...

(Math | Calculus

Asymptotes

Definition of a horizontal asymptote: The line $y=y_{0}$ is a "horizontal asymptote" of $f(x)$ if and only if $f(x)$ approaches y_{0} as x approaches + or $-\boldsymbol{\infty}$.

Definition of a vertical asymptote: The line $x=x_{0}$ is a "vertical asymptote" of $f(x)$ if and only if $f(x)$ approaches + or - ©as x approaches x_{0} from the left or from the right.

Definition of a slant asymptote: the line $y=a x+b$ is a "slant asymptote" of $f(x)$ if and only if $\lim _{(x->+/-\infty)} f(x)=a x+$ b.

Concavity

Definition of a concave up curve: $f(x)$ is "concave up" at x_{0} if and only if $f^{\prime}(x)$ is increasing at x_{0}
Definition of a concave down curve: $f(x)$ is "concave down" at x_{0} if and only if $f^{\prime}(x)$ is decreasing at x_{0}
The second derivative test: If f " (x) exists at x_{0} and is positive, then $f "(x)$ is concave up at x_{0}. If f " $\left(x_{0}\right)$ exists and is negative, then $f(x)$ is concave down at x_{0}. If f " (x) does not exist or is zero, then the test fails.

Critical Points

Definition of a critical point: a critical point on $f(x)$ occurs at x_{0} if and only if either $f^{\prime}\left(x_{0}\right)$ is zero or the derivative doesn't exist.

Extrema (Maxima and Minima)
 Local (Relative) Extrema

Definition of a local maxima: A function $f(x)$ has a local maximum at x_{0} if and only if there exists some interval I containing x_{0} such that $f\left(x_{0}\right)>=f(x)$ for all x in .

Definition of a local minima: A function $f(x)$ has a local minimum at x_{0} if and only if there exists some interval I containing x_{0} such that $f\left(x_{0}\right)<=f(x)$ for all x in .

Occurrence of local extrema: All local extrema occur at critical points, but not all critical points occur at local extrema.

The first derivative test for local extrema: If $f(x)$ is increasing ($\left.f^{\prime}(x)>0\right)$ for all x in some interval (a, $\left.x_{0}\right]$ and $f(x)$ is decreasing ($\left.f^{\prime}(x)<0\right)$ for all x in some interval $\left[x_{0}, b\right)$, then $f(x)$ has a local maximum at x_{0}. If $f(x)$ is decreasing ($f^{\prime}(x)$ Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,
www.matherana.synthasite.com
<0) for all x in some interval (a, x_{0}] and $f(x)$ is increasing ($f(x)>0$) for all x in some interval $\left[x_{0}, b\right)$, then $f(x)$ has a local minimum at x_{0}.

The second derivative test for local extrema: If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$, then $f(x)$ has a local minimum at x_{0}. If f $'\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)<0$, then $f(x)$ has a local maximum at x_{0}.

Absolute Extrema

Definition of absolute maxima: y_{0} is the "absolute maximum" of $f(x)$ on I if and only if $y_{0}>=f(x)$ for all x on .
Definition of absolute minima: y_{0} is the "absolute minimum" of $f(x)$ on I if and only if $y_{0}<=f(x)$ for all x on I.
The extreme value theorem: If $f(x)$ is continuous in a closed interval I, then $f(x)$ has at least one absolute maximum and one absolute minimum in I.

Occurrence of absolute maxima: If $f(x)$ is continuous in a closed interval I, then the absolute maximum of $f(x)$ in I is the maximum value of $f(x)$ on all local maxima and endpoints on I.

Occurrence of absolute minima: If $f(x)$ is continuous in a closed interval I, then the absolute minimum of $f(x)$ in I is the minimum value of $f(x)$ on all local minima and endpoints on I.

Alternate method of finding extrema: If $f(x)$ is continuous in a closed interval I, then the absolute extrema of $f(x)$ in I occur at the critical points and/or at the endpoints of I.
(This is a less specific form of the above.)

Increasing/Decreasing Functions

Definition of an increasing function: A function $f(x)$ is "increasing" at a point x_{0} if and only if there exists some interval I containing x_{0} such that $f\left(x_{0}\right)>f(x)$ for all x in I to the left of x_{0} and $f\left(x_{0}\right)<f(x)$ for all x in I to the right of x_{0}.

Definition of a decreasing function: A function $f(x)$ is "decreasing" at a point x_{0} if and only if there exists some interval I containing x_{0} such that $f\left(x_{0}\right)<f(x)$ for all x in I to the left of x_{0} and $f\left(x_{0}\right)>f(x)$ for all x in I to the right of x_{0}.

The first derivative test: If $f^{\prime}\left(x_{0}\right)$ exists and is positive, then $f^{\prime}(x)$ is increasing at x_{0}. If $f^{\prime}(x)$ exists and is negative, then $f(x)$ is decreasing at x_{0}. If f ' $\left(x_{0}\right)$ does not exist or is zero, then the test tells fails.

Inflection Points

Definition of an inflection point: An inflection point occurs on $f(x)$ at x_{0} if and only if $f(x)$ has a tangent line at x_{0} and there exists and interval I containing x_{0} such that $f(x)$ is concave up on one side of x_{0} and concave down on the other side.

Series Expansions

(Math | Calculus | Series Expansions)

Series (Summation) Expansions

Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,
www.matherana.synthasite.com

Basic Properties

Convergence Tests
Function-->Summation and Summation-->Function Conversions

Select function $\mathbf{f}(\mathbf{x})$ to expand into a summation $f(x)=\sum ?$	Select term $\mathbf{a}_{\mathbf{n}}$ in summation to simplify:
Exponential / Logarithm Functions $\begin{aligned} & \underline{f(x)}=e ; e^{-1} ; e^{x} \\ & \underline{f(x)}=\ln (x) \end{aligned}$	Geometric Series $\underline{a}_{\underline{n}}=r^{n}$
Root Functions $\underline{f(x)}=\sqrt{ }(x) ; 1 / \sqrt{ }(x)$	Power Series $\begin{aligned} & \underline{a}_{\mathbf{n}}=n ; n^{2} ; n^{3} ; \ldots \\ & \underline{a}_{n}=1 / n_{i} 1 / n^{2} ; 1 / n^{3} ; 1 / n^{4} ; \\ & 1 / n^{5} ; 1 / n^{6} ; 1 / n_{7} ; 1 / n^{8} ; \\ & 1 / n^{9} ; 1 / n^{10} ; 1 / n^{p} \end{aligned}$

35)

Special Functions

(Math | Calculus | Integrals | Special Functions)
Some of these functions I have seen defined under both intervals (0 to x) and (x to inf). In that case, both variant definitions are listed.
gamma $=$ Euler's γ constant $=0.5772156649 . .$.
$r(x)=\operatorname{Gamma}(x)=\int_{0 t^{\wedge}(x-1)}^{\infty} \mathbf{e}^{\wedge(-t)} d t$ (Gamma function)
$\mathbf{B}(\mathbf{x}, \mathbf{y})=\int_{\int^{1} \mathrm{c} \mathbf{t}^{\wedge}(\mathrm{x}-1)}^{(1-t)^{\wedge(y-1)} \mathbf{D T} \text { (Beta function) }}$
$E i(x)=\int_{x e^{\wedge(-t)} / t \text { DT (exponential integral) or it's variant, NONEQUIVALENT form: }}^{\infty}$
$E i(x)=y+\ln (x)+\int_{0}^{x}\left(e^{\wedge}-1\right) / t D T=\operatorname{gamma}+\ln (x)+\sum(n=1 . . i n f) x^{\wedge} /(n * n!)$
$\operatorname{li}(x)=\int_{200}^{x} 1 / \ln (t)$ DT (logarithmic integral)
$\operatorname{Si}(x)=\int_{x}^{\infty} \times \sin (t) / t$ DT (sine integral) or it's variant, NONEQUI VALENT form:
Si $(x)=\int_{0 \sin (t) / t D T}^{x}=P I / 2-\int_{x \sin (t) / t ~ D T}^{\infty}$
$C i(x)=\int_{\times \cos (t) / t}^{\infty}$ DT (cosine integral) or it's variant, NONEQUI VALENT form:
$C l(x)=-\int_{x}^{\infty} \operatorname{COs}(t) / t D T=$ gamma $+\ln (x)+\int_{0(\operatorname{COs}(t)-1) / t D T(c o s i n e ~ i n t e g r a l)}^{\infty}$
$\operatorname{Chi}(x)=\underset{\Gamma \times}{\operatorname{gamma}}+\operatorname{In}(x)+\int_{o(\cosh (t)-1) / t}^{x}$ DT (hyperbolic cosine integral)
$\operatorname{Shi}(x)=\int_{0 \sinh (t) / t}^{x}$ DT (hyperbolic sine integral)
$\operatorname{Erf}(x)=2 / P I^{\wedge(1 / 2)} \int_{o e^{\wedge}\left(-t^{\wedge} 2\right)}^{x} D T=2 / \sqrt{ } \sum_{(n=0 . . i n f)(-1)^{\wedge} n^{\wedge}(2 n+1)}^{(n!(2 n+1))(e r r o r ~}$ function)
FresnelC $(x)=\int_{\int^{x}}^{x} \operatorname{COs}\left(P I / 2 t^{\wedge}\right)$ DT
FresnelS(x) $=\int_{0 \sin \left(P I / 2 t^{\wedge}\right)}^{x}$ DT
$\operatorname{dilog}(x)=\int_{1}^{x} \ln (t) /(1-t) D T$
$\operatorname{Psi}(x)=\frac{\frac{\mathbb{d}}{\mathbb{d}}}{\operatorname{dr}} \operatorname{In}(\operatorname{Gamma}(x))$
Psi($n, x)=n^{\text {th }}$ derivative of Psi(x)
$W(x)=$ inverse of $x^{*} e^{\wedge x}$
$L_{\text {sub } n}(x)=\left(e^{\wedge x} / n!\right)\left(x^{\wedge n} e^{\wedge(-x)}\right)^{(n)}$ (laguerre polynomial degree n. (n) meaning $n^{\text {th }}$ derivative)
$\operatorname{Zeta}(s)=\sum\left(n=1 .\right.$. inf) $1 / n^{\wedge}$
Dirichlet's beta function $B(x)=\sum\left(n=0 .\right.$. inf) $(-1)^{\wedge} /(2 n+1)^{\wedge} x$
Theorems with hyperlinks have proofs, related theorems, discussions, and/or other info.
36)

Table of Derivatives

(Math | Calculus | Derivatives | Table Of)
Power of x.

$$
\begin{array}{|l|l|l|}
\hline \frac{d}{d x} & \begin{array}{l}
\frac{d}{d} \\
\mathbf{m}^{n} \\
x=1
\end{array} & \begin{array}{l}
\frac{d}{d} x^{n}=n x^{(n-1)} \\
\underline{\text { Proof }}
\end{array} \\
\hline
\end{array}
$$

Exponential / Logarithmic

$\frac{d}{d x} e^{x}=e^{x}$ Proof	$\frac{d}{d d^{x}} \mathrm{~b}^{\mathrm{x}}=\mathrm{b}^{\mathrm{x}} \ln (\mathrm{~b})$ Proof	$\frac{d}{d x} \ln (x)=1 / x$ Proof

Trigonometric

$\begin{aligned} & \frac{d \mathbf{d}}{d^{4}} \sin x=\cos x \\ & \underline{\text { Proof }} \end{aligned}$	$\begin{aligned} & \frac{d}{d x} \\ & \csc x=-\csc x \cot x \\ & \underline{\text { Proof }} \end{aligned}$
$\frac{d}{d x} \cos x=-\sin x$ Proof	$\frac{d}{d x} \sec x=\sec x \tan x$ Proof
$\stackrel{d}{d i x}_{\tan x=\sec ^{2} x}$ Proof	$\frac{d}{d}_{\cot x}=-\csc ^{2} x$ Proof

Inverse Trigonometric

$\frac{d}{d{ }_{d i}} \arcsin x=\frac{1}{\sqrt{r\left(1-x^{2}\right)}}$	$\frac{d}{d x} \operatorname{arccsc} x=\frac{-1}{\|x\| \sqrt{\left(x^{2}-1\right)}}$
$\frac{d}{d} \arccos x=\frac{-1}{\sqrt{\left(1-x^{2}\right)}}$	$\frac{d}{d x}_{\operatorname{arcsec} x}=\frac{1}{\|x\| \sqrt{\left(x^{2}-1\right)}}$
$\frac{d}{d x} \arctan x=\frac{1}{1+x^{2}}$	$\frac{\frac{d}{d x}}{\operatorname{arccot} x}=\frac{-1}{1+x^{2}}$

Hyperbolic

$\frac{d}{d^{d}} \sinh x=\cosh x$ Proof	$\frac{d}{d x^{*}} \operatorname{csch} x=-\operatorname{coth} x \operatorname{csch} x$ Proof
$\frac{d}{d x} \cosh x=\sinh x$ Proof	$\frac{d}{d i d}$ sech $x=-\tanh x \operatorname{sech} x$ Proof
$\frac{\frac{d}{d i d}}{\tanh x=1-\tanh ^{2} x}$ Proof	$k_{\text {coth }} x=1-\operatorname{coth}^{2} x$ Proof

Those with hyperlinks have proofs.

Statistic

37)

chi²-distribution/b>

(Math | Distributions | chi² ${ }^{2}$-Distributions)

The χ^{2}-distribution, with n degrees of freedom, is given by the equation:
$f\left(X^{2}\right)=\left(X^{2}\right)^{\wedge(n / 2-1)} e^{\wedge\left(X^{2}\right.} / 2^{)} 2^{\wedge(-n / 2)} / \boldsymbol{r}(n / 2)$
The area within an interval $(a, \infty)=\int_{a}^{\infty} f\left(X^{2}\right) d X^{2}=\boldsymbol{\Gamma}(\mathrm{n} / 2, \mathrm{a} / 2) / \boldsymbol{\Gamma}(\mathrm{n} / 2)$ (See also Gamma function)
38)

Normal Probability Calculator

(Math | Statistics | z-Distribution | Probability Calculator)

Java Normal Probability Calculator

(for Microsoft 2.0+/Netscape 2.0+/Java Script browsers only)
To find the area \mathbf{P} under the normal probability curve $\mathbf{N}($ mean, standard_deviation) within the interval (left, right), type in the 4 parameters and press "Calculate". The standard normal curve

Young Scientist M.H.Rana,
www.matherana.synthasite.com
$N(0,1)$ has a mean=0 and s.d. $=1$. Use -inf and +inf for infinite limits.

t-distributions/ b>

(Math | Distributions | t-Distributions)

The t -distribution, with n degrees of freedom, is given by the equation:

$$
\begin{gathered}
f(t)=\left[\boldsymbol{\Gamma}((n+1) / 2)\left(1+x^{\wedge} / n\right)^{\wedge(-n / 2-1 / 2)}\right] /[\boldsymbol{r}(n / 2) \sqrt{(P I n)}] \text { (See also Gamma Function.) } \\
40)
\end{gathered}
$$

Z-distribution/b>

(Math | Distributions | z-Distribution)

Young Scientist M.H.Rana,
www.matherana.synthasite.com

The z - is a $N(0,1)$ distribution, given by the equation:
$f(z)=1 / \sqrt{(2 \underline{P I})} \underline{e}^{\left(-z^{\wedge} 2 / 2\right)}$
The area within an interval $(a, b)=$ normalcdf $(a, b)=\int_{a}^{b} e^{-z^{\wedge} 2 / 2} d z$ (It is not integrable algebraically.)
The Taylor expansion of the above assists in speeding up the calculation:
$\operatorname{normalcdf}(-\infty, z)=1 / 2+1 / \sqrt{(2 P I)} \sum_{(k=0 . . \infty)}\left[\left((-1)^{\wedge k} x^{\wedge(2 k+1)}\right) /\left((2 k+1) 2^{\wedge k} k!\right)\right]$

Standard Normal Probabilities:

(The table is based on the area \mathbf{P} under the standard normal probability curve, below the respective z-statistic.)

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-4.0	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00002	0.00002	0.00002	0.00002
-3.9	0.00005	0.00005	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00003	0.00003
-3.8	0.00007	0.00007	0.00007	0.00006	0.00006	0.00006	0.00006	0.00005	0.00005	0.00005
-3.7	0.00011	0.00010	0.00010	0.00010	0.00009	0.00009	0.00008	0.00008	0.00008	0.00008
-3.6	0.00016	0.00015	0.00015	0.00014	0.00014	0.00013	0.00013	0.00012	0.00012	0.00011
-3.5	0.00023	0.00022	0.00022	0.00021	0.00020	0.00019	0.00019	0.00018	0.00017	0.00017
-3.4	0.00034	0.00032	0.00031	0.00030	0.00029	0.00028	0.00027	0.00026	0.00025	0.00024
-3.3	0.00048	0.00047	0.00045	0.00043	0.00042	0.00040	0.00039	0.00038	0.00036	0.00035
-3.2	0.00069	0.00066	0.00064	0.00062	0.00060	0.00058	0.00056	0.00054	0.00052	0.00050
-3.1	0.00097	0.00094	0.00090	0.00087	0.00084	0.00082	0.00079	0.00076	0.00074	0.00071
-3.0	0.00135	0.00131	0.00126	0.00122	0.00118	0.00114	0.00111	0.00107	0.00103	0.00100
-2.9	0.00187	0.00181	0.00175	0.00169	0.00164	0.00159	0.00154	0.00149	0.00144	0.00139
-2.8	0.00256	0.00248	0.00240	0.00233	0.00226	0.00219	0.00212	0.00205	0.00199	0.00193
-2.7	0.00347	0.00336	0.00326	0.00317	0.00307	0.00298	0.00289	0.00280	0.00272	0.00264
-2.6	0.00466	0.00453	0.00440	0.00427	0.00415	0.00402	0.00391	0.00379	0.00368	0.00357
-2.5	0.00621	0.00604	0.00587	0.00570	0.00554	0.00539	0.00523	0.00508	0.00494	0.00480
-2.4	0.00820	0.00798	0.00776	0.00755	0.00734	0.00714	0.00695	0.00676	0.00657	0.00639

Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,
www.matherana.synthasite.com

-2.3	0.01072	0.01044	0.01017	0.00990	0.00964	0.00939	0.00914	0.00889	0.00866	0.00842
-2.2	0.01390	0.01355	0.01321	0.01287	0.01255	0.01222	0.01191	0.01160	0.01130	0.01101
-2.1	0.01786	0.01743	0.01700	0.01659	0.01618	0.01578	0.01539	0.01500	0.01463	0.01426
-2.0	0.02275	0.02222	0.02169	0.02118	0.02067	0.02018	0.01970	0.01923	0.01876	0.01831
-1.9	0.02872	0.02807	0.02743	0.02680	0.02619	0.02559	0.02500	0.02442	0.02385	0.02330
-1.8	0.03593	0.03515	0.03438	0.03362	0.03288	0.03216	0.03144	0.03074	0.03005	0.02938
-1.7	0.04456	0.04363	0.04272	0.04181	0.04093	0.04006	0.03920	0.03836	0.03754	0.03673
-1.6	0.05480	0.05370	0.05262	0.05155	0.05050	0.04947	0.04846	0.04746	0.04648	0.04551
-1.5	0.06681	0.06552	0.06425	0.06301	0.06178	0.06057	0.05938	0.05821	0.05705	0.05592
-1.4	0.08076	0.07927	0.07780	0.07636	0.07493	0.07353	0.07214	0.07078	0.06944	0.06811
-1.3	0.09680	0.09510	0.09342	0.09176	0.09012	0.08851	0.08691	0.08534	0.08379	0.08226
-1.2	0.1	0.11314	0.11123	0.10935	0.10749	0.10565	0.10383	0.10204	0.10027	0.09852
-1.1	0.13566	0.13350	0.13136	0.12924	0.12714	0.12507	0.12302	0.12100	0.11900	0.11702
-1.0	0.15865	0.15625	0.15386	0.15150	0.14917	0.14686	0.14457	0.14231	0.14007	0.13786
-0.9	0.18406	0.18141	0.17878	0.17618	0.17361	0.17105	0.16853	0.16602	0.16354	0.16109
-0.8	0.21185	0.20897	0.20611	0.20327	0.20045	0.19766	0.19489	0.19215	0.18943	0.18673
-0.7	0.24196	0.23885	0.23576	0.23269	0.22965	0.22663	0.22363	0.22065	0.21769	0.21476
-0.6	0.27425	0.27093	0.26763	0.26434	0.26108	0.25784	0.25462	0.25143	0.24825	0.24509
-0.5	0.30853	0.30502	0.30153	0.29805	0.29460	0.29116	0.28774	0.28434	0.28095	0.27759
-0.4	0.34457	0.34090	0.33724	0.33359	0.32997	0.32635	0.32276	0.31917	0.31561	0.31206
-0.3	0.38209	0.37828	0.37448	0.37070	0.36692	0.36317	0.35942	0.35569	0.35197	0.34826
-0.2	0.42074	0.41683	0.41293	0.40904	0.40516	0.40129	0.39743	0.39358	0.38974	0.38590
-0.1	0.46017	0.45620	0.45224	0.44828	0.44433	0.44038	0.43644	0.43250	0.42857	0.42465
-0.0	0.50000	0.49601	0.49202	0.48803	0.48404	0.48006	0.47607	0.47209	0.46811	0.46414

Цava Normal Probability Calculator

41)

Fourier Series

(Math | Advanced | Fourier Series)

The fourier series of the function $f(x)$

$a(0) / 2+\sum_{(k=1 ., \infty)}(a(k) \cos k x+b(k) \sin k x)$
$a(k)=1 /$ PI $\int_{-\pi /}^{\pi} f(x) \cos k x d x$
$b(k)=1 /$ PI $\int_{-\pi f(x)}^{\pi} \sin k x d x$
aRemainder of fourier series. $S n(x)=$ sum of first $n+1$ terms at x.
Trai Rashik Bargia Sotra By M.H.Rana
remainder $(n)=f(x)-S n(x)=1 / P I \int_{-n f(x+t) D n(t) d t}^{\pi}$
$\operatorname{Sn}(x)=1 /$ PI $\int_{-\pi f(x+t)}^{\pi} \operatorname{Dn}(t) d t$
$\operatorname{Dn}(x)=$ Dirichlet kernel $=1 / 2+\cos x+\cos 2 x+. .+\cos n x=[\sin (n+1 / 2) x] /[$ $2 \sin (x / 2)]$
-Riemann's Theorem. If $f(x)$ is continuous except for a finite \# of finite jumps in every finite interval then:
$\lim _{(k->\infty)} \int_{a f(t) \cos k t d t=\lim _{(k->\infty)}^{b} \int a f(t) \sin k t d t=0, l}^{b}$
The fourier series of the function $f(x)$ in an arbitrary interval.
$A(0) / 2+\sum(k=1 . . \infty)[A(k) \cos (k(P I) x / m)+B(k)(\sin k(P I) x / m)]$
$a(k)=1 / m \int_{-m f(x)}^{m} \cos (k(P I) x / m) d x$
$b(k)=1 / m \int^{1 m} \cdot m(x) \sin (k(P I) x / m) d x$
oParseval's Theorem. If $f(x)$ is continuous; $f(-P I)=f(P I)$ then
$1 / P I \int_{-\pi f^{\wedge}}^{\pi}(x) d x=a(0)^{\wedge} / 2+\sum(k=1 . . \infty)\left(a(k)^{\wedge}+b(k)^{\wedge}\right)$
oFourier I ntegral of the function $f(x)$
$f(x)=\int_{0}^{\infty}(a(y) \cos y x+b(y) \sin y x) d y$
$a(y)=1 / P I \int_{-\infty f(t) \cos t y d t}^{\infty}$
$b(y)=1 / P I \int_{-\infty f(t) \sin t y d t}^{\infty}$
$f(x)=1 /$ PI $\int_{o d y}^{\infty} \int_{-\infty}^{\infty}(t) \cos (y(x-t)) d t$
aSpecial Cases of Fourier Integral
if $f(x)=f(-x)$ then
$f(x)=2 /$ PI $\int_{0 \cos x y d y}^{\infty} \int_{o f(t)}^{\infty} \cos y t d t$
if $f(-x)=-f(x)$ then
$f(x)=2 /$ PI $\int_{0 \sin x y d y}^{\infty} \int_{0 \sin y t d t}^{\infty}$
-Fourier Transforms

Fourier Cosine Transform

$g(x)=\Gamma(2 / P I) \int_{c f(t)}^{\infty} \cos x t d t$

Fourier Sine Transform

$g(x)=\Gamma(2 / P I) \int_{c f(t) \sin x t d t}^{\infty}$
Identities of the Transforms
If $f(-x)=f(x)$ then
Fourier Cosine Transform (Fourier Cosine Transform (f(x)))=f(x)
If $f(-x)=-f(x)$ then
Fourier Sine Transform (Fourier Sine Transform (f(x))) =f(x)
42)

Recursive Formulas

(Math | Advanced Topics| Recursive Formulas)

Recursive Formulas

Recursive expansions are given for the following functions.

- $y^{1 / n}$ open
- B / A open
- $\sqrt{ }(x)$ open

43)

Recursive Formulas

(Math | Advanced Topics| Recursive Formulas | B/A)

Recursive Formulas for B/A

Explicit form:
Trai Rashik Bargia Sotra By M.H.Rana

Find B / A where B and A are real numbers and $B>0$
Recursive form:
Convert B and A to scientific notation base 2 ($C++$ has function "frexp" for this). Note: mantissa is ${ }^{3}$.5 and <1.

Let
$a=$ mantissa of A
$b=$ mantissa of B
$\exp =$ exponent of $b-$ exponent of a
$x_{0}=1$
$x_{n+1}=x_{n}\left(2-a x_{n}\right)$
Reiterate x until desired precision reached. Result only has to be close, not perfect. I suggest about 5 times.
$\mathrm{y}_{0}=\mathrm{b} \mathrm{x}_{\mathrm{n}}$
$y_{i+1}=y_{i}+x_{n}\left(b-a y_{i}\right)$
Reiterate y until desired precision reached.
$B / A=y_{i} * 2^{\exp }$
Example: 314.51 / 5.6789
Written in base-2 scientific notation:
$B=0.61357421875 * 2^{9}$
$A=0.7098625 * 2^{3}$
$\exp =9-3=6$

iteration	value
x_{0}	1
x_{1}	1.2901375
x_{2}	1.398740976607287
x_{3}	1.408652781763906
x_{4}	1.408723516847958 (will use this value for x)
	value

$B / A=0.864356433463227 * 2^{6}=$
55.318811741710538
55.318811741710538 (true value)

Trai Rashik Bargia Sotra By M.H.Rana

Source: J eff Yates, et al.
44)

Recursive Formulas

(Math | Advanced | Recursive Formulas | $\sqrt{ }(\mathrm{A})$)

Recursive Formulas for $\sqrt{ }(A)$

Explicit form:
Find $\sqrt{ }(A)$, where A is a real number >0.
Recursive form:
Convert A to scientific notation base 2 ($C++$ has function "frexp" for this). Note: mantissa is ${ }^{3} .5$ and <1.

Let
$\mathrm{a}=$ mantissa of A
$\exp =$ exponent of a
$a=a * 2^{(\exp \bmod 2)}$
$\exp =\exp \backslash 2 \quad$ (Note: integer divide)
$x_{n+1}=\left(x_{n} / 2\right)\left(3-a x_{n}{ }^{2}\right)$
Reiterate about 5 or 6 times then do y with that result.
$y_{i+1}=y_{i}+\left(x_{n} / 2\right)\left(a-y_{i}{ }^{2}\right)$
Reiterate until required precision attained.
$\sqrt{A}=y_{i} * 2^{\exp }$
Source: J eff Yates.
45)

Recursive Formulas
(Math \| Advanced \| Recursive Formulas | $\mathbf{y}^{1 / \mathrm{n}}$)

Recursive Formulas for $\mathbf{y}^{1 / n}$

Explicit form:
$y^{1 / n}=x$
Recursive form:
$x_{k+1}=\left(x_{k}+y /\left(x_{k}\right)^{n-1}\right) / 2$

Young Scientist M.H.Rana,
where $y^{3} 0$ and $n>0$
or y $\hat{I} \hat{A}$ and n is odd, positive, and integer.
(for negative n , evaluate the above formula with n positive, then invert your answer).
Example: $2^{1 / 3}=1.259921049894 \ldots$

iteration	value
x_{0}	1.0000000000
x_{1}	1.5000000000
x_{2}	1.1944444444
x_{3}	1.2981416381
x_{4}	1.2424821566
x_{5}	1.2690093603
x_{6}	1.2554742937
x_{7}	1.2621680807
x_{8}	1.2588035314
x_{9}	1.2604812976
x_{10}	1.2596412994
x_{20}	1.2599207765
x_{50}	1.259921049894
$x_{\boldsymbol{\infty}}$	$1.259921049894 \ldots$

Source: J eff Yates, et al.
46)

Transforms

(Math | Advanced | Transforms)
oLaplace Transforms
$f(x)=\int_{0}^{\infty} e^{\wedge(-x t)} g(t) d t$ (Laplace Transform)
$f(x)=\int_{0}^{\infty} e^{\wedge(-x t)} g(t) d \alpha(t)($ Laplace-Stieltjes Transform)
$f 2(x)=L\{L\{g(t)\}\}=\int c g(t) /(x+t) d t$ (Stieltjes Transform)
-Fourier Transforms

$f(x)=1 / \sqrt{ }(2 \pi) \int_{n-x} g(t) e^{\wedge(i t x)}$	
$x)=\sqrt{(2 / \pi)}$	$(x) \cos (x t) d t$ (Cosine Transform)
) $=\sqrt{ }(2 / \pi)$	$g(x) \sin (x t) d t$ (Sine Transform)

Trai Rashik Bargia Sotra By M.H.Rana

$$
f(x)=\sum(k=0 . . \infty) g(k) x^{\wedge} k
$$

47)

Addition Table/ b>

(Math | General | AdditionTable)

Addition Table

+	0	1	2	3	4	5	6	7	8	9	10
0	0	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10	11
2	2	3	4	5	6	7	8	9	10	11	12
3	3	4	5	6	7	8	9	10	11	12	13
4	4	5	6	7	8	9	10	11	12	13	14
5	5	6	7	8	9	10	11	12	13	14	15
6	6	7	8	9	10	11	12	13	14	15	16
7	7	8	9	10	11	12	13	14	15	16	17
8	8	9	10	11	12	13	14	15	16	17	18
9	9	10	11	12	13	14	15	16	17	18	19
10	10	11	12	13	14	15	16	17	18	19	20

E

(Math | Miscellaneous | Constants | e)
$e=2.7182818284590452353602874713526624977572470936999595749669676277240766$ 303535475945713821785251664274 ...
$e=\lim _{(n->0)}(1+n)^{\wedge(1 / n)}$ or $e=\lim _{(n->\infty)}(1+1 / n)^{\wedge n}$
www.matherana.synthasite.com
see also Exponential Function Expansions.
49)

Fraction to Decimal Conversion

(Math | General | Fraction to Decimal Conversion)

Fraction to Decimal Conversion Tables

I mportant Note: any span of numbers that is underlined signifies that those numbers are repeated. For example, $0 . \underline{09}$ signifies $0.090909 . .$.

Only fractions in lowest terms are listed. For instance, to find 2/8, first simplify it to $1 / 4$ then search for it in the table below.

fraction $=$ decimal			
1/1 $=1$			
1/2 $\mathbf{2}=0.5$			
1/3 $\mathbf{3}=0 . \underline{3}$	$2 / 3=0.6$		
1/4 $\mathbf{4}=0.25$	$3 / 4=0.75$		
1/5 5 0.2	$2 / 5=0.4$	$3 / 5=0.6$	$4 / 5=0.8$
1/6 $6=0.1 \underline{6}$	$5 / 6=0.8 \underline{3}$		
$\mathbf{1 / 7}=0.142857$	$2 / 7=0.285714$	$3 / 7=0.428571$	$4 / 7=0.571428$
	$5 / 7=0 . \underline{714285}$	$6 / 7=0.857142$	
1/8 $\mathbf{8}=0.125$	$3 / 8=0.375$	$5 / 8=0.625$	$7 / 8=0.875$
1/9 $9=0.1$	$2 / 9=0.2$	$4 / 9=0.4$	$5 / 9=0 . \underline{5}$
	$7 / 9=0.7$	$8 / 9=0.8$	
1/10 $=0.1$	$3 / 10=0.3$	$7 / 10=0.7$	$9 / 10=0.9$
1/11 $=0 . \underline{09}$	$2 / 11=0.18$	$3 / 11=0.27$	$4 / 11=0.36$
	$5 / 11=0.45$	$6 / 11=0.54$	$7 / 11=0 . \underline{63}$
	$8 / 11=0 . \underline{72}$	$9 / 11=0 . \underline{81}$	$10 / 11=0 . \underline{90}$

Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,	www.matherana.synthasite.com		
$\mathbf{1 / 1 2}=0.08 \underline{3}$	$5 / 12=0.41 \underline{6}$	$7 / 12=0.58 \underline{3}$	$11 / 12=0.91 \underline{6}$
$\mathbf{1 / 1 6}=0.0625$	$3 / 16=0.1875$	$5 / 16=0.3125$	$7 / 16=0.4375$
	$11 / 16=0.6875$	$13 / 16=0.8125$	$15 / 16=0.9375$
$\mathbf{1 / 3 2}=0.03125$	$3 / 32=0.09375$	$5 / 32=0.15625$	$7 / 32=0.21875$
	$9 / 32=0.28125$	$11 / 32=0.34375$	$13 / 32=0.40625$
	$15 / 32=0.46875$	$17 / 32=0.53125$	$19 / 32=0.59375$
	$21 / 32=0.65625$	$23 / 32=0.71875$	$25 / 32=0.78125$
	$27 / 32=0.84375$	$29 / 32=0.90625$	$31 / 32=0.96875$

Need to convert a repeating decimal to a fraction? Follow these examples:
Note the following pattern for repeating decimals:
$0.22222222 \ldots=2 / 9$
$0.54545454 \ldots=54 / 99$
0.298298298... = 298/999

Division by 9's causes the repeating pattern.

Note the pattern if zeros precede the repeating decimal:

$0.02222222 \ldots=2 / 90$
$0.00054545454 \ldots=54 / 99000$
$0.00298298298 \ldots=298 / 99900$
Adding zero's to the denominator adds zero's before the repeating decimal.
To convert a decimal that begins with a non-repeating part, such as $0.21456456456456456 \ldots$, to a fraction, write it as the sum of the non-repeating part and the repeating part. $0.21+0.00456456456456456 \ldots$
Next, convert each of these decimals to fractions. The first decimal has a divisor of power ten. The second decimal (which repeats) is converted according to the pattern given above.
21/100 + 456/99900
Now add these fraction by expressing both with a common divisor 20979/99900 + 456/99900
and add.
21435/99900
Finally simplify it to lowest terms
1429/6660
and check on your calculator or with long division.
$=0.2145645645 \ldots$
50)

Gamma Constant

(Math | Miscellaneous | Constants | Gamma)
gamma $=\gamma=0.57721566490153286061$...
$Y=\lim _{(n->\infty)}(1+1 / 2+1 / 3+1 / 4+\ldots+1 / n-\ln (n))=0.5772156649 \ldots$
$y=-\int_{0 e^{\wedge-x}}^{\infty} \ln x d x$
$r^{\prime}(1)=-\gamma \quad$ (see Gamma Function)
51)

Interest and Exponential Growth

(Math | General | I nterest and Exponential Growth)

The Compound I nterest Equation

$$
P=C(1+r / n)^{n t}
$$

where
$P=$ future value
$\mathrm{C}=$ initial deposit
$r=$ interest rate (expressed as a fraction: eg. 0.06)
$\mathrm{n}=\#$ of times per year interest is compounded
$t=$ number of years invested

Simplified Compound I nterest Equation

When interest is only compounded once per year ($n=1$), the equation simplifies to:
$\mathbf{P}=\mathbf{C}(\mathbf{1}+r)^{t}$

Continuous Compound Interest

When interest is compounded continually (i.e. $\mathrm{n}-->\boldsymbol{\infty}$), the compound interest equation takes the form:
$P=C e^{r t}$

Demonstration of Various Compounding

The following table shows the final principal (P), after $\mathrm{t}=1$ year, of an account initially with $\mathrm{C}=$ $\$ 10000$, at 6% interest rate, with the given compounding (n). As is shown, the method of compounding has little effect.

\mathbf{N}	\mathbf{P}
1 (yearly)	$\$ 10600.00$
2 (semiannually)	$\$ 10609.00$
4 (quarterly)	$\$ 10613.64$

[^1]Young Scientist M.H.Rana,

12 (monthly)	$\$ 10616.78$
52 (weekly)	$\$ 10618.00$
365 (daily)	$\$ 10618.31$
continuous	$\$ 10618.37$

Loan Balance

Situation: A person initially borrows an amount A and in return agrees to make n repayments per year, each of an amount P. While the person is repaying the loan, interest is accumulating at an annual percentage rate of r, and this interest is compounded n times a year (along with each payment). Therefore, the person must continue paying these installments of amount P until the original amount and any accumulated interest is repaid. This equation gives the amount B that the person still needs to repay after t years.

$$
B=A(1+r / n)^{N T}-P \frac{(1+r / n)^{N T}-1}{(1+r / n)-1}
$$

where
$B=$ balance after t years
$A=$ amount borrowed
$\mathrm{n}=$ number of payments per year
$P=$ amount paid per payment
$r=$ annual percentage rate (APR)

52)

Lengths

(Math | General | Weights and Measures | Lengths)

Unit Conversion Tables for Lengths \& Distances

A note on the metric system:
Before you use this table, convert to the base measurement first. For example, convert centimeters to meters, convert kilograms to grams.

The notation $1.23 \mathrm{E}-4$ stands for $1.23 \times 10^{-4}=0.000123$.

from ${ }^{\text {to }}$	= __ feet	= __ inches	= __ meters	= __ miles	= __ yards
foot		12	0.3048	(1/5280)	(1/3)
inch	(1/12)		0.0254	(1/63360)	(1/36)
meter	3.280839...	39.37007...		6.213711...E-4	1.093613...
mile	5280	63360	1609.344		1760
yard	3	36	0.9144	(1/1760)	

Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,
www.matherana.synthasite.com
To use: Find the unit to convert from in the left column, and multiply it by the expression under the unit to convert to.
Examples: foot $=\underline{12}$ inches; 2 feet $=\underline{2 \times 12}$ inches.
Useful Exact Length Relationships

```
mile = 1760 yards = 5280 feet
yard = 3 feet = 36 inches
foot = 12 inches
inch = 2.54 centimeters
```

53)

Metric Prefixes

(Math | General | Weights and Measures | Metric Prefixes)

Metric Prefix Table

| Number Prefix Symbol | Number Prefix Symbol | | |
| :--- | :--- | :--- | :--- | :--- |
| 10^{1} | deka- da | 10^{-1} | deci- d |
| 10^{2} | hecto- h | 10^{-2} | centi- c |
| 10^{3} | kilo- | 10^{-3} | milli- m |
| 10^{6} | mega- M | 10^{-6} | micro- μ |
| 10^{9} | giga- G | 10^{-9} | nano- n |
| 10^{12} | tera- T | 10^{-12} | pico- p |
| 10^{15} | peta- P | 10^{-15} | femto- f |
| 10^{18} | exa- E | 10^{-18} | atto- a |
| 10^{21} | zeta- Z | 10^{-21} | zepto- z |
| 10^{24} | yotta- Y | 10^{-24} | yocto- y |

Online Unit Converters

54)

Multiplication Table

(Math | General | MultiplicationTable

Multiplication Table

12	0	12	24	36	48	60	72	84	96	108	120	132	144
11	0	11	22	33	44	55	66	77	88	99	110	121	132
10	0	10	20	30	40	50	60	70	80	90	100	110	120
9	0	9	18	27	36	45	54	63	72	81	90	99	108
8	0	8	16	24	32	40	48	56	64	72	80	88	96
7	0	7	14	21	28	35	42	49	56	63	70	77	84
6	0	6	12	18	24	30	36	42	48	54	60	66	72
5	0	5	10	15	20	25	30	35	40	45	50	55	60
4	0	4	8	12	16	20	24	28	32	36	40	44	48
3	0	3	6	9	12	15	18	21	24	27	30	33	36
2	0	2	4	6	8	10	12	14	16	18	20	22	24
1	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
X	0	1	2	3	4	5	6	7	8	9	10	11	12

www.matherana.synthasite.com

Alternative Format

\mathbf{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{0}$	0	0	0	0	0	0	0	0	0	0	0	0	0
$\mathbf{1}$	0	1	2	3	4	5	6	7	8	9	10	11	12
$\mathbf{2}$	0	2	4	6	8	10	12	14	16	18	20	22	24
$\mathbf{3}$	0	3	6	9	12	15	18	21	24	27	30	33	36
$\mathbf{4}$	0	4	8	12	16	20	24	28	32	36	40	44	48
$\mathbf{5}$	0	5	10	15	20	25	30	35	40	45	50	55	60
$\mathbf{6}$	0	6	12	18	24	30	36	42	48	54	60	66	72
$\mathbf{7}$	0	7	14	21	28	35	42	49	56	63	70	77	84
$\mathbf{8}$	0	8	16	24	32	40	48	56	64	72	80	88	96

Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,
www.matherana.synthasite.com

$\mathbf{9}$	0	9	18	27	36	45	54	63	72	81	90	99	108
$\mathbf{1 0}$	0	10	20	30	40	50	60	70	80	90	100	110	120
$\mathbf{1 1}$	0	11	22	33	44	55	66	77	88	99	110	121	132
$\mathbf{1 2}$	0	12	24	36	48	60	72	84	96	108	120	132	144

55)

Number Notation

(Math | General | Number Notation)

Hierarchy of Decimal Numbers

Number	Name	How many
0	zero	
1	one	
2	two	three
3	four	five
4	six	seven
5	eight	newe
6	nine	two
7	ten	three tens
8	twenty	four tens
9	thirty	five tens
10	forty	six tens
20	fifty	seven tens
30	sixty	eight tens
40	seventy	nine tens
50	eighty	

Young Scientist M.H.Rana,
www.matherana.synthasite.com

Number	Name
100	one hundred
1,000	one thousand
10,000	ten thousand
100,000	one hundred thousand
$1,000,000$	one million

Some people use a comma to mark every 3 digits. It just keeps track of the digits and makes the numbers easier to read.

Beyond a million, the names of the numbers differ depending where you live. The places are grouped by thousands in America and France, by the millions in Great Britain and Germany.

Name	American-French	English-German
million	$1,000,000$	$1,000,000$
billion	$1,000,000,000$ (a thousand millions)	$1,000,000,000,000$ (a million millions)
trillion	1 with 12 zeros	1 with 18 zeros
quadrillion	1 with 15 zeros	1 with 24 zeros
quintillion	1 with 18 zeros	1 with 30 zeros
sextillion	1 with 21 zeros	1 with 36 zeros
septillion	1 with 24 zeros	1 with 42 zeros
octillion	1 with 27 zeros	1 with 48 zeros
googol		1 with 100 zeros
googolplex		1 woogol of zeros

Fractions

Digits to the right of the decimal point represent the fractional part of the decimal number. Each place value has a value that is one tenth the value to the immediate left of it.

Number	Name	Fraction
.1	tenth	$1 / 10$
.01	hundredth	$1 / 100$
.001	thousandth	$1 / 1000$
.0001	ten thousandth	$1 / 10000$
.00001	hundred thousandth	$1 / 100000$

Examples:

$0.234=234 / 1000$ (said - point 234 , or 234 thousandths, or two hundred thirty four thousandths)
$4.83=483 / 100$ (said - 4 point 83 , or 4 and 83 hundredths)

SI Prefixes

Number	Prefix Symbol	Number	Prefix Symbol
10^{1}	deka- da	10^{-1}	deci- d
10^{2}	hecto- h	10^{-2}	centi- C
10^{3}	kilo- k	10^{-3}	milli- m
10^{6}	mega- M	10^{-6}	micro- u (greek mu)
10^{9}	giga- G	10^{-9}	nano- n
10^{12}	tera- T	10^{-12}	pico- p
10^{15}	peta- P	10^{-15}	femto-f
10^{18}	exa- E	10^{-18}	atto- a
10^{21}	zeta- Z	10^{-21}	zepto- z
10^{24}	yotta- Y	10^{-24}	yocto- y

Roman Numerals

$I=1$	(I with a bar is not used)
$V=5$	$\bar{V}=5,000$
$X=10$	$\bar{X}=10,000$
$L=50$	$\bar{L}=50,000$
$C=100$	$\bar{C}=100000$
$D=500$	$\bar{D}=500,000$
$M=1,000$	$\bar{M}=1,000,000$

Roman Numeral Calculator

Examples:

$1=\mathrm{I}$	$11=\mathrm{XI}$	$25=\mathrm{XXV}$
$2=\mathrm{II}$	$12=\mathrm{XII}$	$30=\mathrm{XXX}$

3 = III	13 = XIII	40 = XL
4 = IV	14 = XIV	49 = XLIX
$5=\mathrm{V}$	15 = XV	50 = L
6 = VI	$16=\mathrm{XVI}$	51 = LI
7 = VII	17 = XVII	60 = LX
8 = VIII	18 = XVIII	70 = LXX
9 = IX	19 = XIX	80 = LXXX
$10=x$	$20=x x$	$90=x C$
	$21=$ XXI	99 = XCIX

www.matherana.synthasite.com

There is no zero in the roman numeral system.
The numbers are built starting from the largest number on the left, and adding smaller numbers to the right. All the numerals are then added together.

The exception is the subtracted numerals, if a numeral is before a larger numeral, you subtract the first numeral from the second. That is, IX is $10-1=9$.

This only works for one small numeral before one larger numeral - for example, IIX is not 8 , it is not a recognized roman numeral.

There is no place value in this system - the number III is 3 , not 111 .
Number Base Systems

Decimal(10)

0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011

Ternary(3)

Hexadecimal(16)

0
1
$2 \quad 2$
103
3 3
$11 \quad 4$
4
$12 \quad 5$
$5 \quad 5$
$20 \quad 6$
6
$21 \quad 7$
$7 \quad 7$
2210
8
11
12
13
A
B

Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,

12	1100	110	14	C
13	1101	111	15	D
14	1110	112	16	E
15	1111	120	17	F
16	10000	121	20	10
17	10001	122	21	11
18	10010	200	22	12
19	10011	201	23	13
20	10100	202	24	14

Each digit can only count up to the value of one less than the base. In hexadecimal, the letters A - F are used to represent the digits $10-15$, so they would only use one character.
56)

PI
(Math | Miscellaneous | Constants | PI)
Pi is a name given to the ratio of the circumference of a circle to the diameter. That means, for any circle, you can divide the circumference (the distance around the circle) by the diameter and always get exactly the same number. It doesn't matter how big or small the circle is, Pi remains the same. Pi is often written using the symbol $\boldsymbol{\pi}_{\text {and }}$ is pronounced "pie", just like the dessert.

History | Pi web sites| Do it yourself Pi |The Digits| Formulas

A Brief History of Pi

Ancient civilizations knew that there was a fixed ratio of circumference to diameter that was approximately equal to three. The Greeks refined the process and Archimedes is credited with the first theoretical calculation of Pi .

In 1761 Lambert proved that Pi was irrational, that is, that it can't be written as a ratio of integer numbers.

In 1882 Lindeman proved that Pi was transcendental, that is, that Pi is not the root of any algebraic equation with rational coefficients. This discovery proved that you can't "square a circle", which was a problem that occupied many mathematicians up to that time. (More information on squaring the circle.)

How many digits are there? Does it ever end?

Because Pi is known to be an irrational number it means that the digits never end or repeat in any known way. But calculating the digits of Pi has proven to be an fascination for mathematicians throughout history. Some spent their lives calculating the digits of Pi, but until computers, less than 1,000 digits had been calculated. In 1949, a computer calculated 2,000 digits and the race was on. Millions of digits have been calculated, with the record held (as of September 1999) by a supercomputer at the University of Tokyo that calculated $206,158,430,000$ digits. (first 1,000 digits)

More about the History of Pi can be found at the Mac Tutor Math History archives.
Trai Rashik Bargia Sotra By M.H.Rana

Approximation of $\mathbf{P i}$

Archimedes calculated that Pi was between 3 10/ 71 and 3 1/ 7 (also written 223/ $71<\mathbf{7}<\mathbf{2 2 / 7}$). 22/ $\mathbf{7}$ is still a good approximation. 355/ 113 is a better one.

Pi Web Sites

Pi continues to be a fascination of many people around the world. If you are interested in learning more, there are many web sites devoted to the number Pi. There are sites that offer thousands, millions, or billions of digits, pi clubs, pi music, people who calculate digits, people who memorize digits, Pi experiments and more. Check this Yahoo page for a complete listing.

A Cool Pi Experiment

One of the most interesting ways to learn more about Pi is to do pi experiments yourself. Here is a famous one called Buffon's Needle.

In Buffon's Needle experiment you can drop a needle on a lined sheet of paper. If you keep track of how many times the needle lands on a line, it turns out to be directly related to the value of Pi .

Buffon's Needle Simulation Applet (Michael J. Hurben)
Buffon's Needle (George Reese, Office for Mathematics, Science and Technology Education University of Illinois Champaign-Urbana)

Digits of $\mathbf{P i}$

First 100 digits

3.1415926535897932384626433832795028841971693993751058209749445923078164 062862089986280348253421170679 ...

First 1000 digits

3.1415926535897932384626433832795028841971693993751058209749445923078164

06286208998628034825342117067982148086513282306647093844609550582231725359408128 48111745028410270193852110555964462294895493038196442881097566593344612847564823 37867831652712019091456485669234603486104543266482133936072602491412737245870066 06315588174881520920962829254091715364367892590360011330530548820466521384146951 94151160943305727036575959195309218611738193261179310511854807446237996274956735 18857527248912279381830119491298336733624406566430860213949463952247371907021798 60943702770539217176293176752384674818467669405132000568127145263560827785771342 75778960917363717872146844090122495343014654958537105079227968925892354201995611 21290219608640344181598136297747713099605187072113499999983729780499510597317328 16096318595024459455346908302642522308253344685035261931188171010003137838752886 58753320838142061717766914730359825349042875546873115956286388235378759375195778 18577805321712268066130019278766111959092164201989

5 million, 10 million, 100 million, and 200 million digits

Formulas for $\mathbf{P i}$

Young Scientist M.H.Rana,
www.matherana.synthasite.com
More complex formulas and derivations

Vieta's Formula

Leibnitz's Formula

$\mathrm{PI} / 4=1 / 1-1 / 3+1 / 5-1 / 7+\ldots$

Wallis Product

$\mathrm{PI} / 2=2 / 1 * 2 / 3 * 4 / 3 * 4 / 5 * 6 / 5 * 6 / 7 * \ldots$
$2 / \mathrm{PI}=\left(1-1 / 2^{2}\right)\left(1-1 / 4^{2}\right)\left(1-1 / 6^{2}\right) \ldots$

Lord Brouncker's Formula

$\left(P^{2}\right) / 8=1 / 1^{2}+1 / 3^{2}+1 / 5^{2}+\ldots$
$\left(P I^{2}\right) / 24=1 / 2^{2}+1 / 4^{2}+1 / 6^{2}+\ldots$

Euler's Formula

$\left(P I^{2}\right) / 6=\sum(n=1 . . \infty) 1 / n^{2}=1 / 1^{2}+1 / 2^{2}+1 / 3^{2}+\ldots$
(or more generally...)
$\sum_{(n=1 . . \infty)} 1 / n^{(2 k)}=(-1)^{(k-1)} \mathrm{Pl}^{(2 \mathrm{k})} 2^{(2 \mathrm{k})} \mathrm{B}_{(2 \mathrm{k})} /(2(2 \mathrm{k})!)$
$B_{(k)}=$ the $k{ }^{\text {th }}$ Bernoulli number. eg. $B_{0}=1 \quad B_{1}=-1 / 2 \quad B_{2}=1 / 6 \quad B_{4}=-1 / 30 \quad B_{6}=1 / 42 \quad B_{8}=-1 / 30 \quad B_{10}=5 / 66$. Further Bernoulli numbers are defined as $(\mathrm{n} 0) \mathrm{B}_{0}+(\mathrm{n} 1) \mathrm{B}_{1}+(\mathrm{n} 2) \mathrm{B}_{2}+\ldots+(\mathrm{n}(\mathrm{n}-1)) \mathrm{B}_{(\mathrm{N}-1)}=0$ assuming all odd Bernoulli \#'s > 1 are $=0$. ($n k$) = binomial coefficient $=n!/(k!(n-k)!)$

See Power Summations \#2 for simplified expressions (without the Bernoulli notation) of these sums for given values of k.
57) Technical Support
(1) Yarn Count Definitions

Metric Count (Nm):	Denier Count (den): Dm $=\mathrm{m} / 1-\mathrm{g}$			
$\mathrm{g} / 9000-\mathrm{m}$		\left\lvert\,	English Cotton Count $\left(\mathbf{N e}_{\mathrm{B}}\right):$	Tex Count (tex):
:---:	:---:			
$\mathrm{Ne}_{\mathrm{B}}=840-\mathrm{yd} / 1-\mathrm{lb}$ or $\mathrm{Ne}_{\mathrm{B}}=768.1-\mathrm{m} /$				
$453.59-\mathrm{g}$		\quad	Tex $=\mathrm{g} / 1000-\mathrm{m}$	
:---:	\right.			

(2) Yarn Count Conversion Factors

From metric count (Nm) to others:

$$
\mathrm{Tex}=1000 / \mathrm{Nm}
$$

$\mathrm{Ne}_{\mathrm{B}}=0.59 \mathrm{x} \mathrm{Nm}$
Den $=9000 / \mathrm{Nm}$
From denier (den) to others:
$\mathrm{Nm}=9000 /$ den
$\mathrm{Ne}_{\mathrm{B}}=5315 / \mathrm{den}$
Tex $=0.111 \mathrm{x}$ den
From English cotton count $\left(\mathrm{Ne}_{\mathrm{B}}\right)$ to others:
$\mathrm{Nm}=1.693 \mathrm{x} \mathrm{Ne}_{\mathrm{B}}$
Tex $=590 / \mathrm{Ne}_{\mathrm{B}}$
Den $=5314 / \mathrm{Ne}_{\mathrm{B}}$
From tex count (tex) to others:
$\mathrm{Nm}=1000 /$ tex
$\mathrm{Ne}_{\mathrm{B}}=590 /$ tex
Den $=9 \mathrm{x}$ tex
Conversion examples:
[Ex. 1: $\mathrm{Ne}_{\mathrm{B}} 30=5315 / 30$ den $=177$ den] [Ex. 2: $\quad 150$ den $=\mathrm{Ne}_{\mathrm{B}} 5315 / 150=\mathrm{Ne}_{\mathrm{B}} 35$] [Ex. 3: $\mathrm{Ne}_{\mathrm{B}} 20=\mathrm{Nm} 1.693 \mathrm{x}$ $20=\mathrm{Nm} 34$]
58)

Volumes
(Math | General | Weights \& Measures | Volumes)

Unit Conversion Tables for Volumes

A note on the metric system:
Before you use this table, convert to the base measurement first. For example, convert centimeters to meters, kilograms to grams, etc.

The notation $1.23 \mathrm{E}-4$ stands for $1.23 \times 10^{-4}=0.000123$.

from $\backslash^{\text {to }}$	$=\ldots$ feet ${ }^{3}$	$=$ gallons	$\begin{aligned} & =-\overline{3} \\ & \text { inches } \end{aligned}$	= __ liters	$=-\overline{\text { meters }^{3}}$	$\overline{\text { miles }}{ }^{3}$	= _- pints	$=$ \qquad quarts	$\overline{y^{\prime}-\overline{d s}}$
foot ${ }^{3}$		7.480519...	1728	28.31684...	0.02831684	$\begin{aligned} & 6.793572 E \\ & -12 \end{aligned}$	59.84415...	29.92207...	(1/27)
gallon	0.1336805		231	3.785411...	$\begin{aligned} & 0.00378541 \\ & 1 . . . \end{aligned}$	$\begin{aligned} & 9.081685 \ldots \\ & E-13 \end{aligned}$	8	4	$\begin{aligned} & 0.0049511 \\ & 31 . . . \end{aligned}$
inch ${ }^{3}$	(1/1728)	(1/231)		0.01638706	$\begin{aligned} & 1.638706 \ldots E \\ & -5 \end{aligned}$	$\begin{aligned} & 3.931465 \ldots \\ & E-15 \end{aligned}$	(1/28.875)	(1/57.75)	(1/46656)
liter	$\begin{aligned} & 0.0353146 \\ & 6 \ldots \end{aligned}$	0.2641720...	61.02374		(1/1000)	$\begin{aligned} & 2.399127 \ldots \\ & E-13 \end{aligned}$	2.113376...	1.056688...	$\begin{aligned} & 0.0013079 \\ & 50 \ldots \end{aligned}$
meter ${ }^{3}$	35.31466..	264.1720...	61023.74	1000		$\begin{aligned} & 2.399127 \ldots \\ & E-10 \end{aligned}$	2113.376...	1056.688...	1.307950...
mile ${ }^{3}$	$\begin{aligned} & 1.471979 . . \\ & . E+11 \end{aligned}$	$\begin{aligned} & 1.101117 \ldots \mathrm{E} \\ & +\mathbf{1 2} \end{aligned}$	$\begin{aligned} & 2.543580 \\ & E+14 \end{aligned}$	$\begin{aligned} & 4.168181 \ldots E \\ & +\mathbf{1 2} \end{aligned}$	$\begin{aligned} & 4.168181 \ldots E \\ & +9 \end{aligned}$		$\begin{aligned} & 8.808937 \ldots E \\ & +12 \end{aligned}$	$\begin{aligned} & 4.404468 \ldots \\ & E+12 \end{aligned}$	$\begin{aligned} & 5.451776 \ldots \\ & E+\mathbf{9} \end{aligned}$
pint	$\begin{aligned} & 0.0167100 \\ & 6 \ldots \end{aligned}$	(1/8)	28.875	0.4731764...	$\begin{aligned} & 4.731764 \ldots E \\ & -4 \end{aligned}$	$\begin{aligned} & 1.135210 \ldots \\ & E-13 \end{aligned}$		(1/2)	$\begin{aligned} & 6.188914 \ldots \\ & E-4 \end{aligned}$
quart	$\begin{aligned} & 0.0334201 \\ & 3 \ldots \end{aligned}$	(1/4)	57.75	0.94635...	$\begin{aligned} & 9.463529 \ldots E \\ & -4 \end{aligned}$	$\begin{aligned} & 2.270421 \ldots \\ & E-13 \end{aligned}$	2		$\begin{aligned} & 0.0012377 \\ & 82 \ldots \end{aligned}$
yard 3	27	201.974...	46656	764.555...	0.7645548...	$\begin{aligned} & 1.834264 \ldots \\ & E-10 \end{aligned}$	1615.792...	807.8961...	

To use: find the unit to convert from in the left column, and multiply it by the expression under the unit to convert to. Examples: foot $^{3}=\underline{1728}$ inches $^{3} ; 2$ feet $^{3}=\underline{2 \times 1728}$ inches 2.

Useful Exact Volume Relationships

fluid ounce $=(1 / 8)$ cup $=(1 / 16)$ pint $=(1 / 32)$ quart $=(1 / 128)$ gallon gallon $=128$ fluid ounces $=231$ inches $^{3}=8$ pints $=4$ quarts
quart $=32$ fluid ounces $=4$ cups $=2$ pints $=(1 / 4)$ gallon
Useful Exact Length Relationships
cup $=8$ fluid ounces $=(1 / 2)$ pint $=(1 / 4)$ quart $=(1 / 16)$ gallon
mile $=63360$ inches $=5280$ feet $=1760$ yards
yard $=36$ inches $=3$ feet $=(1 / 1760)$ mile
foot $=12$ inches $=(1 / 3)$ yard $=(1 / 5280)$ mile
pint $=16$ fluid ounces $=(1 / 2)$ quart $=(1 / 8)$ gallon
Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,
inch $=2.54$ centimeters $=(1 / 12)$ foot $=(1 / 36)$ yard
liter $=1000$ centimeters $^{3}=1$ decimeter $^{3}=(1 / 1000)$ meter 3
Note that when converting volume units:

1 foot = 12 inches

$(1 \text { foot })^{3}=(12 \text { inches })^{3}$ (cube both sides)
$1 \mathrm{foot}^{3}=1728$ inches 3
The linear \& volume relationships are not the same!

Online Unit Converters

59)

Math Tables: Weights and Measures

(Math \| General \| Weights and Measures \| Areas)

Unit Conversion Tables for Areas

A note on the metric system:
Before you use this table convert to the base measurement first. For example, convert centimeters to meters, convert kilograms to grams.

The notation $1.23 \mathrm{E}-4$ stands for $1.23 \times 10^{-4}=0.000123$.

from $\^{\text {to }}$	= __ acres	$=\ldots$ feet 2	$\begin{aligned} & =- \\ & \text { inches } \end{aligned}$	$\text { meters }^{2}$	$=\ldots$ miles 2	$\begin{aligned} & =-\overline{2} \\ & \text { yards }^{2} \end{aligned}$
acre		43560	6272640	4046.856...	(1/640)	4840
foot ${ }^{2}$	(1/43560)		144	0.09290304	(1/27878400)	(1/9)
inch ${ }^{2}$	(1/6272640)	(1/144)		6.4516E-4	$\begin{aligned} & 2.490977 E- \\ & 10 \end{aligned}$	(1/1296)
meter ${ }^{2}$	$\begin{aligned} & 2.471054 \ldots E \\ & -4 \end{aligned}$	10.76391...	1550.0031		$\begin{aligned} & 3.861021 \ldots E \\ & -7 \end{aligned}$	1.195990...
mile ${ }^{2}$	640	27878400	$\begin{aligned} & 4.0145 \mathbf{E}+ \\ & \mathbf{9} \end{aligned}$	$\begin{aligned} & 2.589988 \ldots E \\ & +6 \end{aligned}$		3097600

To use: Find the unit to convert from in the left column, and multiply it by the expression under the unit to convert to.
Examples: foot $^{2}=\underline{144}$ inches $^{2} ; 2$ feet $^{2}=\underline{2 \times 144}$ inches 2.
Useful Exact Area \& Length Relationships

```
acre =(1/640) miles}\mp@subsup{}{}{2
mile = 1760 yards = 5280 feet
yard = 3 feet = 36 inches
foot = 12 inches
inch = 2.54 centimeters
```

Note that when converting area units:

```
    1 foot = 12 inches
    (1 foot)}\mp@subsup{)}{}{2}=(12\mathrm{ inches) }\mp@subsup{)}{}{2}\mathrm{ (square both sides)
    1 foot }\mp@subsup{}{}{2}=144\mp@subsup{\mathrm{ inches}}{}{2
```

The linear \& area relationships are not the same!

60) Unit equivalent:

1 Centimeters $=1$ Centimeters	1 Centimeters $=0.39370$ Inches
1 Inches $=2.54000$ Centimeters	1 Feet $=12$ Inches
1 Feet $=30.48000$ Centimeters	1 Yards $=36$ Inches
1 Yards $=91.44000$ Centimeters	1 Meters $=39.37000$ Inches
1 Meters $=100$ Centimeters	1 Chains $=792$ Inches
1 Chains $=2012$ Centimeters	1 Kilometers $=39370$ Inches
1 Kilometers $=100000$ Centimeters	1 Miles $=63360$ Inches
1 Miles $=160934$ Centimeters	1 Centimeters $=0.01094$ Yards
1 Centimeters $=0.03281$ Feet	1 Inches $=0.02778$ Yards
1 Inches $=0.08333$ Feet	

1 Yards = 3 Feet	1 Feet $=0.33330$ Yards
1 Meters $=3.28100$ Feet	1 Meters = 1.09360 Yards
1 Chains $=66$ Feet	1 Chains $=22$ Yards
1 Kilometers $=3281$ Feet	1 Kilometers $=1093.60000$ Yards
1 Miles $=5280$ Feet	1 Miles = 1760 Yards
1 Centimeters $=0.01000$ Meters	1 Centimeters $=0.00049$ Chains
1 Inches $=0.02540$ Meters	1 Inches $=0.00126$ Chains
1 Feet $=0.30480$ Meters	1 Feet $=0.01515$ Chains
1 Yards $=0.91440$ Meters	1 Yards $=0.04545$ Chains
1 Chains $=20.12000$ Meters	1 Meters $=0.04971$ Chains
1 Kilometers $=1000$ Meters	1 Kilometers $=49.71000$ Chains
1 Miles $=1609$ Meters	1 Miles $=80$ Chains
1 Centimeters $=0.00001$ Kilometers	1 Centimeters $=0.00000$ Miles
1 Inches $=0.00002$ Kilometers	1 Inches $=0.00001$ Miles
1 Feet $=0.00030$ Kilometers	1 Feet $=0.00019$ Miles
1 Yards $=0.00091$ Kilometers	1 Yards $=0.00056$ Miles
1 Meters $=0.00100$ Kilometers	1 Meters $=0.00062$ Miles
1 Chains $=0.02120$ Kilometers	1 Chains $=0.01250$ Miles
1 Miles = 1.60900 Kilometers	1 Kilometers $=0.62140$ Miles

Spinning Calculations

Count:-
Count is the measure of fineness or coarseness of yarn.
Systems of Count Measurement

There are two systems for the measurement of count.

1) Direct System
2) Indirect System
3) Direct System

It is used for the measurement of weight per unit length of yarn. When count increases, fineness decreases. (count \uparrow fineness \downarrow) Commonly used units in this system of measurement are:-

1) $\operatorname{Tex}(1$ Tex $=1 \mathrm{~g} / 1000 \mathrm{~m})$
2) Grex (1 Grex $=1 \mathrm{~g} / 10,000 \mathrm{~m})$
3) $\operatorname{Denier~(~} 1$ Denier $=1 \mathrm{~g} / 9000 \mathrm{~m}$)
4) Indirect System:-

It is used for the measurement of length per unit weight of yarn.

When count increases, fineness increases. (count \uparrow fineness \uparrow) Commonly used subsystems of indirect system are:-

1) English System ($1 \mathrm{Ne}=1$ Hank/ 1b)
2) Metric System ($1 \mathrm{Nm}=1 \mathrm{Km} / \mathrm{kg}$)

Trai Rashik Bargia Sotra By M.H.Rana

For cotton yarn, length of 1 Hank $=840$ yards.
Whenever the type of count is not mentioned with the count, it is understood that it is the English count.

Basic Conversions

No Length Weight Time

$1.1 \mathrm{in}=2.54 \mathrm{~cm} 1 \mathrm{lb}=7000 \mathrm{gr} 1 \mathrm{~min}=60 \mathrm{sec}$
2. $1 \mathrm{yd}=36$ in $1 \mathrm{lb}=16 \mathrm{oz} 1 \mathrm{hr}=60 \mathrm{~min}$
$3.1 \mathrm{~m}=1.0936 \mathrm{yd} 1 \mathrm{oz}=437.5 \mathrm{gr} 1 \mathrm{shift}=8 \mathrm{hr}$
4. $1 \mathrm{Hk}=840 \mathrm{yd} 1 \mathrm{~kg}=2.2046 \mathrm{lb} 1$ day $=24 \mathrm{hr}$
5. $1 \mathrm{Hk}=7$ leas $1 \mathrm{bag}=100 \mathrm{lb} 1$ day $=3$ shifts

Abbreviations:

In $[\operatorname{inch}(e s)], y d[y a r d(s)], \operatorname{kg}[k i l o g r a m(s)], m[m e t e r(s)], H k[h a n k(s)], ~ 1 b$ [pound(s)], oz [ounce(s)], gr [grain(s)], sec [second(s)], min [minute(s)], [hour (s)].

Count Conversion Table

Ne Nm Tex Grex Denier
$\mathrm{Ne}=1$ xNe 0.5905 xNm 590.5 /Tex 5905 /Grex 5315 /Den
$\mathrm{Nm}=1.693 \mathrm{xNe} 1 \mathrm{xNm} 1000 /$ Tex $10,000 /$ Grex $9000 / D e n$
Tex=590.5 /Ne $1000 / \mathrm{Nm} 1$ xTex 0.1 xGrex 0.111 xDen
Grex $=5905 / \mathrm{Ne} 10,000 / \mathrm{Nm} 10$ xTex 1 xGrex 1.111 xDen
Denier= 5315 /Ne 9000 /Nm 9 xTex 0.9 xGrex 1 xDen

Derivation:-

$\mathrm{Ne}=0.5905 \mathrm{Nm}$
Let us suppose we have,
Total $\mathrm{Ne}=\mathrm{x}$ Ne
Ne = x Hanks/ lb

This means that,
x Hanks are in --------------------1b
Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,
www.matherana.synthasite.com
840x yards in ---------------------1 1 b
840 x m in ---------------------1b 1 b

1. 0936

840 x x 2.2046 m in----------- 1 b
1.0936×1000
(We know that, $\mathrm{Nm}=\mathrm{km} / \mathrm{kg}=\mathrm{m} / \mathrm{g}$.
840 x x $2.2046 \mathrm{~m} / \mathrm{g}$ Since this value has the units of Nm

1. 0936 x 1000 so it equals Nm.)
$\mathrm{Nm}=840 \mathrm{x} 2.2046 \mathrm{x}$
2. 0936×1000
$\mathrm{Nm}=1.693 \mathrm{x}$ (as $\mathrm{x}=\mathrm{Ne}$,)
$\mathrm{Nm}=1.693 \mathrm{Ne}$
$\mathrm{Ne}=0.5905 \mathrm{Nm}$

Yarn Classification

(on the basis of no. of plies)

1) Single yarn
e. g 80/1 (read as 80 single) means 80 fibres twisted to form a single yarn.
2) Plied yarn
e. g. 80/2 (read as 80 double) means 80 fibres twisted to form two individual yarns.
The number of plied yarns may exceed two.

Draft \& TPI Formulas

Surface speed = DN / min
D = dia. of rotating element
$\mathrm{N}=\operatorname{rpm}$ (no. of revolutions/min)
Mechanical Draft $=$ S. S of Front roller ($\mathrm{D} N$) >1
S.S of Back roller (D N)

Actual Draft = count delivered
count fed
Indirect system
A. D. $=1 / \mathrm{w}$ delivered

Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,
1 / w fed
Actual Draft = count fed
count delivered
Direct system
A. D. $=\mathrm{w} / 1$ fed .
w / 1 delivered

No. of Twists Per Inch, TPI = rpm of flyer simplex S. S of F.R

Numerical Problems

1) Calculate the length of a package of $80 / 1$ and cone weight 2.083 lb . (Note:- English count is represented as C/N i-e, yarn count/ no. of yarn plies)
Yarn type $=80 / 1$
Cone wt. = 2. 083 lb
Cone length = ?

Solution:-
length $=$ Ne x $1 \mathrm{~b} \times 840$ yards
$=80 \times 2.083 \times 840$ yards
$=139977.6 \mathrm{~m}$

1. 0936
$=127997.07 \mathrm{~m}--$----------Ans.
2) Calculate the length of yarn with $\mathrm{Ne}(80 / 2)$ and weight $4.166 \mathrm{lb}:-$

Yarn type $=80 / 2$
Cone weight $=4.166 \mathrm{lb}$
Cone length = ?

Solution:-
length $=$ Ne x $1 \mathrm{~b} \times 840$ yards
$=80 \times 4.166 \times 840$ yards
2
Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,
$=139977.6 \mathrm{~m}$

1. 0936
= 127997.07 m ----------------Ans.
3) Calculate the draft at drawing frame if the feeding sliver is 68 grains/ yard, delivered sliver is 48 grains/ yard and the number of doublings is 8 :-
Count of feeding sliver $=68 \mathrm{gr} / \mathrm{yd}$
Count of delivered sliver $=48 \mathrm{gr} / \mathrm{yd}$
Doubling $=8$ (8 sliver cans used)
Draft = ?

Solution:-
Actual draft = count fed x doubling (direct system)
count delivered
$=68 \times 8$
48
= 11.33-------------Ans.
4) Calculate the grains/ yard of delivered sliver if feeding sliver is 68 , doubling is 6 and the draft is 7 :-
Count of F. $\mathrm{S}=68$
Count of D. $\mathrm{S}=$?
Doubling = 6
Draft = 7

Solution :-
A. $D=F . S \times D$
D. S
$7=68 \times 6$
D. S
D. $S=68 \times 6=58.28$ grains/ yard ---------Ans. 7

Young Scientist M.H.Rana,
www.matherana.synthasite.com
5) Calculate the draft if feeding sliver is $60 \mathrm{gr} / \mathrm{yd}$, delivered sliver is 1 HS and doubling is 6 :-
Count of $\mathrm{F} . \mathrm{S}=60 \mathrm{gr} / \mathrm{yd}$
Count of D. $\mathrm{S}=1 \mathrm{HS}$
Doubling, $\mathrm{D}=6$
Draft = ?

Solution :-
60 gr in------------------------1 1 yd
60 lb in----------------------- 1 yd
7000
60 x 840 lb in------------ 840 yd
7000
60 x $840 \mathrm{lb} /$ Hank (direct count)
7000
7000 x 1 Hank/ lb (indirect count)
60840
= 0. 139 Hank/ 1b
$=0.139 \mathrm{Ne}$
Actual Draft $=$ count del. $=1 .=43.6$--------Ans.
count fed 0.139/ 6
6) Calculate the English count of delivered sliver on drawing frame when doubling is 6 , count of feeding sliver is $70 \mathrm{gr} / \mathrm{yd}$, diameter of front roller is 30 mm and its rpm is 100 , whereas the diameter of back roller is 15 mm and its rpm is 10 :-
Count of D. $\mathrm{S}=$?
Count of F. S $=70 \mathrm{gr} / \mathrm{yd}$
Doubling, $\mathrm{D}=6$
Dia. of F. R, DF $=30 \mathrm{~mm}$
Dia. of B. R, DB $=15 \mathrm{~mm}$
Rpm of F.R, NF = 100
Rpm of B. R, NB = 10

Young Scientist M.H.Rana,
www.matherana.synthasite.com
Solution :-
F. S. $=70 \mathrm{gr} / \mathrm{yd}=70$ grains in-----------------1 yd
$=701 \mathrm{l}$ in-------------------1 yd
7000
$=0.01 \mathrm{lb}$ in--------------------1 yd
$=(0.01 \times 840) 1 b$ in-----------840 yd
$=8.4 \mathrm{lb}$ in-----------------------840 yd
$=8.4 \mathrm{lb}$ in----------------------1 Hank
$=1 / 8.4$ Hanks/ 1b
$=0.119$ Hanks $/ 1 b=0.119$ H. S (Ne).
Mechanical Draft $=$ S. S of F. R $=\pi$ D $\mathrm{F}_{\mathrm{F}}=30 \times 100=20$
S. S of B. R $\pi D_{B} N_{B} 15 \times 10$

On drawing frame, neither twist is inserted nor the waste is produced so we have;
Mechanical draft $=$ Actual draft $=20$
Now in case of indirect count, A.D $=$ count delivered count fed
A. D = D. S .
F. S/ D
$20=$ D. S .
$0.119 / 6$
D. $S=20 \times 0.119$

6
$=0.396$ H. S (Ne) ---------------Ans.
7) Calculate the TPI (twists per inch) produced on a simplex with diameter of front roller 28 mm and its rpm be 30 . The rpm of flyer is 1000.

TPI on simplex =?
Dia. of F. $\mathrm{R}=28 \mathrm{~mm}=2.8 \mathrm{~cm}$
Rpm of F. $\mathrm{R}=30$
Rpm of flyer $=1000$

Young Scientist M.H.Rana,
www.matherana.synthasite.com
Solution :-
Dia. of Front roller $=2.8 \mathrm{~cm} / 2.54$ ($1 \mathrm{in}=2.54 \mathrm{~cm}$)
$=1.1023$ inch
Surface speed of F. R, ${ }^{\wedge} D N=\pi x$ dia. of F. R x rpm of F. R
$=\pi \mathrm{x} 1.1023 \times 30$
$=103.88$ "/ min.
TPI $=$ rpm of flyer $=1000=9.63$----------------Ans.
S. S of F.R 103.88
8) Calculate the TPI on simplex if the diameter of back roller is $15 / 16$ " ,
rpm of B. R is 10 , rpm of flyer is 1000 and draft is 6 :-
TPI on simplex = ?
Dia. of B. $\mathrm{R}=15 / 16$ "
Dia. of $\mathrm{F} . \mathrm{R}=$?
Rpm of B. $\mathrm{R}=10$
Rpm of flyer $=1000 \mathrm{rpm}$
Draft, $D=6$
Solution :-
S. S of B. R $=\pi \mathrm{DN}=\pi \times 15 / 16 " \times 10=29.45 " / \mathrm{min}$

D = S. S of F.R \Rightarrow = S.S of F.R
S.S of B. R 29. 45
S. S of F. R = $6 \times 29.45=176.71 " / \mathrm{min}$

TPI = rpm of flyer = $1000 .=5.66$------------------Ans.
S. S of F.R 176. 71

Production calculations

\square Production

The output of a m/c per unit time is called its production. The production is usually calculated in the units of weight/time or length/time e.g, oz/hr, lb/shift, yd/hr, Hk/day etc.
The most commonly used unit of time for production calculation is hour. So if Trai Rashik Bargia Sotra By M.H.Rana

\square Efficiency

It is the ability of a material to perform its task.
In other words, it is the ratio of the output of $a \mathrm{~m} / \mathrm{c}$ to the input of that m / c.

Mathematically,
Efficiency = output
Input
Its value ranges from $0 \rightarrow 1$. it has no units.

\square Efficiency Percentage

It is the \%age performance of a m/c.

Mathematically,
Efficiency = output x 100
Input
Its value ranges from $0 \rightarrow 100$.
If the efficiency of $\mathrm{a} \mathrm{m} / \mathrm{c}$ is 0.8 , its percentage efficiency 80. The word 'percent' means 'per 100' which suggests that the efficiency is 80 . 100
\square Cleaning Efficiency (\%)
It is the ratio of the trash extracted to the total trash content in a material.
For any m/c, mathematically,
Cleaning eff. = trash in fed material - trash in del. material trash in fed material

Beating action

The regular hard hits or strikes made by a rotating beater through a material (for its opening or cleaning) are known as beating action.

Beats per inch

The no. of beats made by a beater per inch of a material surface is known as beating action.
Mathematically,
Beats/inch = beater rpm x no. of arms
$\pi \mathrm{x}$ feed roller dia" x feed roller rpm

\square Twists per inch

Twist insertion \& draft in a sliver gives roving and further twisting and drafting of roving gives yarn.
So the no. of twists in one inch of yarn (or roving) is known as TPI (twists perinch).

Mathematically,
TPI = spindle speed (rpm) .
Front roller delivery (in/min)
Also,
TPI $\sqrt{ }$ count
$\mathrm{TPI}=\mathrm{TM} \times \sqrt{ }$ count

Hank:

The word 'Hank' is used in two ways. Literally, it is a unit of length, ie;
1 Hank = 840 yard but practically, we take it as a unit of English count, ie;
1 Hank $=840$ yd/lb
2 Hank $=1680 \mathrm{yd} / \mathrm{lb}$

[^2]
Roller Speeds:

In spinning calculations, we deal in two kinds of roller speeds, i-e; surface speed and rotating speed (rpm). So when the speed of a roller is mentioned without any units, this means that it is the rpm of the roller, e^{-g};
speed $=20$ means
speed $=20 \mathrm{rpm}$

PRODUCTION FORMULAS

1. Production of Scutcher
$\mathrm{P}=\pi \mathrm{DN} \times 60 \mathrm{x}$ lap ct. (oz/yd) x η [oz/hr]36
2. Production of Card m / c
$P=\pi D N \times 60 \times$ sliver ct. (gr/yd) x η x tension draft [1b/hr] 367000
3. Production of Draw frame
$\mathrm{P}=\pi \mathrm{DN} \times 60 \mathrm{x}$ del. sliver ct. $(\mathrm{gr} / \mathrm{yd}) \mathrm{x} \eta \mathrm{x}$ no. of x no. of [1b/hr]
367000 heads m/c
4. Production of Lap Former
$P=\pi D N x 60 x$ lap ct. $(\mathrm{gr} / \mathrm{yd}) \mathrm{x} \eta \mathrm{x}$ no. of $\mathrm{m} / \mathrm{c}[1 \mathrm{~b} / \mathrm{hr}] 367000$
5. Production of Comber
$P=f(\pi D N) x 60 x$ sliver ct. $(g r / y d) x \quad \eta x N x$ no. of x no. of $x 1-w$. 367000 heads m/c 100 [1b/hr]
6. Production of Simplex
$\mathrm{P}=\pi \mathrm{DN} x 60 \mathrm{x}$ roving ct. (gr/yd) x $\eta \mathrm{x}$ no. of spindles [lb/hr] 367000
7. Production of Ring frame
$P=\pi D N \times 60 \times 16 \times 8 \times \eta[o z / s h i f t / s p i n d l e]$
TPI x 36840 x ct.
$P=P[o z / s h i f t / s p i n d l e] x$ no. of spindles x no. of frames [oz/shift]
www.matherana.synthasite.com

DERIVATIONS \& PROBLEMS

1.Production of Scutcher

$\mathrm{P}=\pi \mathrm{DN} \times 60 \mathrm{x}$ lap ct. (oz/yd) x η [oz/hr]
36
DERIVATION:
Let $D=$ dia. of lap roller (in inches)
$\mathrm{N}=$ rpm of lap roller
$\eta=$ efficiency of m / c
$\mathrm{P}=$ production
Production = surface speed of lap roller x lap ct. (wt/l)
$=\pi \mathrm{DN}$ (in/min) x lap (oz/yd)
$=\pi$ DN ($\mathrm{yd} / \mathrm{min}$) x lap (oz/yd) 36
$=\pi$ DN x 60 ($\mathrm{yd} / \mathrm{hr}$) x lap (oz/yd) 36
Since the efficiency of a m / c is always less than 1 so,
$=\pi \mathrm{DN} \times 60$ ($\mathrm{yd} / \mathrm{hr}$) $\times \mathrm{lap}(\mathrm{oz} / \mathrm{yd}) \times \eta 36$
$=\pi$ DN x 60 ($\mathrm{yd} / \mathrm{hr}$) x $\mathrm{lap}(\mathrm{oz} / \mathrm{yd}) \times \mathrm{n}[\mathrm{oz} / \mathrm{hr}] 36$
The value ($\boldsymbol{\pi} \mathrm{DN} / 36$) x 60 may be taken as a production constant when working on a m / c with a fixed dia. and rpm of delivery roller.
The delivery speed of a pair of rollers is the same as its surface speed. So
the value $\pi \mathrm{DN}$ can also be mentioned as delivery speed.
$\mathrm{P}=\mathrm{P}[\mathrm{oz} / \mathrm{hr}][1 \mathrm{~b} / \mathrm{hr}] 16$
$P=P[1 b / h r] \times 8[1 b / s h i f t]$
$P=P[1 b / h r] x 24[1 b /$ day $]$
$\mathrm{P}=\mathrm{P}[\mathrm{oz} / \mathrm{hr}][\mathrm{kg} / \mathrm{hr}] 16 \times 2.2046$
Also,
$P=\pi$ DN $\times 60 \times 1 \times \eta[1 b / h r] 36840 \mathrm{Ne}$
but let us not use this formula to avoid confusions.
Q:1-Calculate the production of scutcher if the lap wt. is $13 \mathrm{oz} / \mathrm{yd}$, and the dia and speed of shell roller are 11 rpm and 240 mm respectively.

Trai Rashik Bargia Sotra By M.H.Rana

Furnish the production in $1 \mathrm{~b} / \mathrm{hr}, \mathrm{kg} / \mathrm{hr}, \mathrm{lb} / \mathrm{shift}, \mathrm{kg} / \mathrm{shift}$ and $\mathrm{bag} /$ day when the efficiency of the m / c is 75% :-
Lap wt/1 = $13 \mathrm{oz} / \mathrm{yd}$
Shell roller speed, $\mathrm{N}=11 \mathrm{rpm}$
Shell roller dia., $D=240 \mathrm{~mm}=9.5$ "
Efficiency, $\eta=75 \%=75 / 100=0.75$
$P[1 b / h r], P[k g / h r], P[1 b / s h i f t], P[k g / s h i f t] \& P[b a g / d a y]=?$

Solution:-

P [oz/hr] $=\pi$ DN x 60×1 ap ct. (oz/yd) x η [oz/hr] 36
$=\pi \times 9.5 \times 11 \times 60 \times 13(o z / y d) \times 0.75[\mathrm{oz} / \mathrm{hr}] 36$
$=9.12 \times 60 \times 13(o z / y d) \times 0.75$ [oz/hr]
$=5334.82$ [oz/hr]
$\mathrm{P}[1 \mathrm{~b} / \mathrm{hr}]=\mathrm{P}[\mathrm{oz} / \mathrm{hr}]=5334.82=333.43[1 \mathrm{~b} / \mathrm{hr}]----$-Ans 1616
$\mathrm{P}[\mathrm{kg} / \mathrm{hr}]=\mathrm{P}[\mathrm{lb} / \mathrm{hr}]=333.43=151.24[\mathrm{~kg} / \mathrm{hr}]----$ Ans 2.20462 .2046
$P[1 b / s h i f t]=P[1 b / h r] \times 8=333.43 \times 8=2667.44[1 b / s h i f t]----A n s$
$\mathrm{P}[\mathrm{kg} /$ shift] $=\mathrm{P}[\mathrm{kg} / \mathrm{hr}] \times 8=151.24 \times 8=1209.92[\mathrm{~kg} / \mathrm{shift}]----$-Ans
$\mathrm{P}[\mathrm{bag} / \mathrm{day}]=\mathrm{P}[1 \mathrm{~b} / \mathrm{hr}] \times 24=333.43 \times 24=80.02$ [bag/day] 100100 Ans
Q:2-The fluted lap roller of a scutcher of 9" dia. makes 10 revolutions per minute. If the lap count is 0.00136 Hk , calculate the production of scutcher in one shift at 80% efficiency:-
Lap count $=0.00136 \mathrm{Hk}$
$=0.00136 \times 840(\mathrm{yd} / \mathrm{lb})$
$=1(1 b / y d) \times 16=14(o z / y d)$
0.00136×840
Lap roller speed, $\mathrm{N}=10 \mathrm{rpm}$
Lap roller dia., D = 9"
Efficiency, $\eta=80 / 100=0.8$
P [1b/shift] = ?

Solution:-

$\mathrm{P}[\mathrm{oz} / \mathrm{hr}]=\pi \mathrm{DN} \times 60 \mathrm{x}$ lap ct. (oz/yd) x η [oz/hr] 36
$=\pi \times 9 " \times 10 \times 60 \times 14 \times 0.8[\mathrm{oz} / \mathrm{hr}]$
36
$=5277.88[\mathrm{oz} / \mathrm{hr}]$
$\mathrm{P}[1 \mathrm{lb} / \mathrm{shift}]=\mathrm{P}[\mathrm{oz} / \mathrm{hr}] \mathrm{x} 8=2639$ [1b/shift] ------ - Ans
16

2. Production of Card m / c

$\mathrm{P}=\pi \mathrm{DN} \times 60 \mathrm{x}$ sliver ct. (gr/yd) x $\eta \mathrm{x}$ tension draft [1b/hr]
367000
DERIVATION:
Let $D=$ dia. of coiler calendar rollers (in inches)
$\mathrm{N}=$ rpm of coiler calendar rollers
$\eta=$ efficiency of m / c
Production $=$ surface speed of doffer x carded sliver ct. (wt/l)
As the sliver has a lesser wt/l than a lap it is
easier to observe its gr/yd rather than its $1 b / y d$.
$=\pi D N$ (in/min) x sliver ($g r / y d$)
$=\pi \mathrm{DN}$ ($\mathrm{yd} / \mathrm{min}$) x sliver ($\mathrm{gr} / \mathrm{yd}$) 36
$=\pi \mathrm{DN} \times 60$ ($\mathrm{yd} / \mathrm{hr}$) x sliver (gr/yd) 36
Since the efficiency of a m/c is always less than 1
and $11 \mathrm{~b}=7000 \mathrm{gr}$ so,
$=\pi \mathrm{DN} \times 60(\mathrm{yd} / \mathrm{hr}) \mathrm{x} \operatorname{sliver}(\mathrm{gr} / \mathrm{yd})(1 \mathrm{~b} / \mathrm{yd})$ x $\eta[1 b / h r] 367000$
$\mathrm{P}[1 \mathrm{~b} / \mathrm{hr}]=\pi \mathrm{DN} \times 60 \mathrm{x}$ sliver ct. $(\mathrm{gr} / \mathrm{yd}) \mathrm{x} \quad \eta \quad[1 \mathrm{~b} / \mathrm{hr}] 367000$
Although mainly dispersion drafting takes place on card m / c but there is
a very small tension draft b/w calendar rollers and coiler calendar rollers. Theoretically, this is ignored but is included in mathematical calculations.

In a case when the dia. and speed (rpm) of coiler calendar rollers are given instead of doffer or calendar rollers, then the tension draft is already included in those values and we need not include that in our formula. So,
P [1b/hr] $=\pi D^{\prime} N^{\prime} \quad x 60 \mathrm{x}$ sliver ct. (gr/yd) x η x tension draft [1b/hr] 367000
Here D' \& N' are assumed to be the dia. \& rpm (respectively) of doffer or calendar rollers.

Trai Rashik Bargia Sotra By M.H.Rana

Q:3-What will be the production of a carding engine in 8 hours at 84% efficiency and 5% waste, if the speed of 2 " coiler calendar rollers is 125 rpm with the carded sliver weighing 58 gr/yd ?
Carded sliver wt/l = 58 gr/yd
Coiler calendar rollers speed, $\mathrm{N}=125 \mathrm{rpm}$
Coiler calendar rollers dia., D = 2"
Efficiency, $\eta=84 \%=0.84$
Waste \%age = 5\%
P [lb/shift] = ?
Solution:-
$\mathrm{P}[1 \mathrm{~b} / \mathrm{hr}]=\pi \mathrm{D}^{\prime} \mathrm{N}^{\prime} \quad \mathrm{x} 60 \mathrm{x}$ sliver ct. (gr/yd) x η [lb/hr] 367000
$=\pi \times 2 " \times 125 \times 60 \times 58(\mathrm{gr} / \mathrm{yd}) \times 0.84[1 \mathrm{~b} / \mathrm{hr}] 367000$
$=9.11[1 \mathrm{~b} / \mathrm{hr}]$
P [lb/shift] = P [1b/hr] x $8=72.9$ [lb/shift] -------Ans
Here the waste percentage is not concerned as the given count is of carded (cleaned) sliver and not of lap. Hence it was just a value given to create confusion.

3. Production of Draw frame

$\mathrm{P}=\pi \mathrm{DN} \times 60 \mathrm{x}$ del. sliver ct. (gr/yd) x $\eta \mathrm{x}$ no. of heads [1b/hr]
367000
DERIVATION:
Let $\mathrm{D}=$ dia. of calendar rollers (in inches)
$\mathrm{N}=$ rpm of calendar rollers
$\eta=$ efficiency of m / c
Production $=$ surface speed of calendar rollers x drawn sliver ct. (wt/1)
$=\pi \mathrm{DN}$ ($\mathrm{in} / \mathrm{min}$) x sliver ($\mathrm{gr} / \mathrm{yd}$)
$=\pi$ DN ($\mathrm{yd} / \mathrm{min}$) x sliver ($\mathrm{gr} / \mathrm{yd}$) 36
$=\pi$ DN x 60 ($\mathrm{yd} / \mathrm{hr}$) x sliver ($\mathrm{gr} / \mathrm{yd}$) 36
$=\pi$ DN x 60 ($\mathrm{yd} / \mathrm{hr}$) $\mathrm{x} \operatorname{sliver~(gr/yd)~(1b/yd)~x~} \eta$ [1b/hr] 367000
$=\pi$ DN x $60 \times$ sliver ct. (gr/yd) x η [lb/hr] 367000
Since a drawing frame may have more than one delivery ends or heads and also we may use one or more m / cs at a time for drawing the same Trai Rashik Bargia Sotra By M.H.Rana

Young Scientist M.H.Rana,
www.matherana.synthasite.com
kinds of slivers, so to calculate the total production, $\mathrm{P}=\pi \mathrm{DN} x 60 \mathrm{x}$ del. sliver ct. (gr/yd) x $\eta \mathrm{x}$ no. of x no. of $[\mathrm{lb} / \mathrm{hr}$] 367000 heads m/c
Q:4-The $3 "$ diameter calendar rollers of a 6 delivery drawing frame revolves 125 rpm. Calculate the production in pounds if the drawn sliver is $60 \mathrm{gr} / \mathrm{yd}$ and the m / c works for 8 hrs at 70% efficiency:-
Drawn sliver wt/l = $60 \mathrm{gr} / \mathrm{yd}$
Calendar rollers speed, $\mathrm{N}=125 \mathrm{rpm}$
Calendar rollers dia., $D=3 "$
Efficiency, $\eta=70 \%=0.7$
P [1b/shift] = ?
Solution:-
$P=\pi$ DN x 60 x del. sliver ct. (gr/yd) x $\eta \mathrm{x}$ no. of x no. of $[1 \mathrm{lb} / \mathrm{hr}$]
367000 heads m/c
$=\pi \times 3 " \times 125 \times 60 \times 60(\mathrm{gr} / \mathrm{yd}) \times 0.7 \times 6 \times 1[1 \mathrm{~b} / \mathrm{hr}] 367000$
$=32.725 \times 2.16[1 \mathrm{~b} / \mathrm{hr}]$
$=70.69[1 \mathrm{~b} / \mathrm{hr}]$
$\mathrm{P}[1 \mathrm{~b} / \mathrm{shift}]=\mathrm{P}[1 \mathrm{~b} / \mathrm{hr}] \mathrm{x} 8=565.52$ [1b/shift] -------Ans

4. Production of Lap Former

$\mathrm{P}=\pi \mathrm{DN} \times 60 \mathrm{x}$ lap ct. (gr/yd) x $\eta \mathrm{x}$ no. of m/c [1b/hr] 367000

1—Sliver Lap M/c

Q:5-The speed and dia. of the fluted lap drum of a sliver lap m/c are 30 rpm and 16 " respectively. If 24 card cans having 0.15 Hk sliver are fed to the m / c, what will be the production in one shift at 70% efficiency?
Feeding sliver count $=0.15 \mathrm{Hk}$
Lap roller speed, $\mathrm{N}=30 \mathrm{rpm}$
Lap roller dia., $D=16 "$
Efficiency, $\eta=70 \%=0.7$
$\mathrm{P}[1 \mathrm{~b} /$ shift $]=$?

No. of yards of each sliver delivered in 1 shift at 70\% efficiency
$=\pi$ DN x $60 \times 8 \mathrm{hr} \mathrm{x} \eta$ [yd/shift] 36
$=\pi \times 16 "$ x $30 \times 60 \times 8 \mathrm{hr} \times 0.7$ [yd/shift] 36
$=14074.34[y d /$ shift]
No. of pounds of each sliver delivered in 1 shift at 70% efficiency
$=[\mathrm{yd} /$ shift] $=14074.34 \mathrm{yd} \mathrm{x} \mathrm{lb}=111.7$ [1b/shift]
sliver count shift 0.15×840 yd
No. of pounds/yard of each sliver delivered
$=[1 \mathrm{~b} /$ shift] $=111.7=0.00794[1 \mathrm{~b} / \mathrm{yd}]$
[yd/shift] 14074.34
No. of $[\mathrm{gr} / \mathrm{yd}]$ of each sliver $=[1 \mathrm{~b} / \mathrm{yd}] \times 7000=55.55[\mathrm{gr} / \mathrm{yd}]$
No. of $[\mathrm{gr} / \mathrm{yd}]$ of 24 slivers $=55.55 \times 24=1333.33[\mathrm{gr} / \mathrm{yd}]$
Now total production;
$\mathrm{P}=\pi \mathrm{DN} \times 60 \mathrm{x}$ lap ct. (gr/yd) x $\eta \mathrm{x}$ no. of $\mathrm{m} / \mathrm{c}[1 \mathrm{~b} / \mathrm{hr}] 367000$
$\mathrm{P}=\pi \times 16 " \mathrm{x} 30 \times 60 \times 1333.33(\mathrm{gr} / \mathrm{yd}) \times 8 \times 0.7 \times 1$ [1b/shift] 367000
= 2680 [1b/shift] ------Ans
2—Ribbon Lap M/c
Q:6-Calculate the production of a ribbon lap m/c in 8 hours at 70% efficiency if the speed of 16 " dia. lap drum is 48 rpm and hank of ribbon lap is 0.0119 .
Feeding sliver count $=0.0119 \mathrm{Hk}$
Lap roller speed, $\mathrm{N}=48 \mathrm{rpm}$
Lap roller dia., $D=16$ "
Efficiency, $\eta=70 \%=0.7$
P [lb/shift] = ?

Solution:-

No. of yards of lap delivered in 1 shift at 70% efficiency
$=\pi$ DN x $60 \times 8 \mathrm{hr} \mathrm{x} \eta[\mathrm{yd} / \mathrm{shift}] 36$
$=\pi \times 16 "$ x $48 \times 60 \times 8 \mathrm{hr} \times 0.7$ [yd/shift] 36
$=22519$ [yd/shift]

[^3]No. of pounds of lap delivered in 1 shift at 70% efficiency
$=[y d / s h i f t]=22519$ yd $\mathrm{x} 1 \mathrm{lb}=2253.7$ [1b/shift]
sliver count shift 0.0119 x 840 yd
Ans

5. Production of Comber

$\mathrm{P}=\mathrm{f}(\boldsymbol{\pi} \mathrm{DN}) \mathrm{x} 60 \mathrm{x}$ sliver ct. (gr/yd) x $\eta \mathrm{x} \mathrm{N} \times \mathrm{no}$. of x no. of $\mathrm{x} 1-\mathrm{w}$ 367000 heads m/c 100
[1b/hr]
Here,
$\mathrm{f}=$ feeding rate
$\mathrm{N}=$ nips/ min of m / c
$\mathrm{w}=$ waste $\%$ age

Q:7-The cylinder of a 6 head comber is running at a speed of 100 nips per minute and each nip feeds $0.25 "$ lap. The hank of lap is 0.0166 . calculate the production of comber in 8 hours at 70% efficiency and 12% waste:-
Feeding rate $=0.25 " / \mathrm{min}$
Count of lap $=0.0166 \mathrm{Hk}$
$=0.0166 \times 840(y d / 1 b)$
$=1 / 13.94(1 b / y d)=0.0717(1 b / y d)$
No. of heads $=6$
Nips $/ \mathrm{min}=100$
No. of $\mathrm{m} / \mathrm{c}=1$
Efficiency $=70 \%=0.7$
Waste \%age = 12\%

Solution:-

$P=f(\pi \mathrm{DN}) \mathrm{x} 60 \mathrm{x}$ sliver ct. $(\mathrm{gr} / \mathrm{yd}) \mathrm{x} \eta \mathrm{x} \mathrm{N} x \mathrm{no}$. of x no. of $\mathrm{x} 1-\mathrm{w}$. 367000 heads m/c 100 [1b/hr]
$\mathrm{P}=0.25 \times 60 \times 0.0717(1 \mathrm{~b} / \mathrm{yd}) \times 0.7 \times 100 \mathrm{x} 6 \mathrm{x} 1 \mathrm{x} 1-12.36100[1 \mathrm{~b} / \mathrm{hr}]$
$=11.04[1 \mathrm{~b} / \mathrm{hr}]$
$=88.33[1 \mathrm{~b} / \mathrm{shift}]-----$ Ans
Trai Rashik Bargia Sotra By M.H.Rana

6. Production of Simplex

$\mathrm{P}=\pi \mathrm{DN} \times 60 \mathrm{x}$ roving ct. (gr/yd) x $\eta \mathrm{x}$ no. of spindles [1b/hr]
367000
Also,
$\mathrm{P}=\pi \mathrm{DN} \times 60 \mathrm{x}$ roving ct. (gr/yd) x η [1b/hr/spindle]
367000
This formula is used when the production of a single spindle is concerned.

Q:8-A simplex frame working at 80% efficiency prepares a full doff in
3. hours. The wt. of roving on full bobbin is 3 lb and 4 oz . The hank of roving is 1.0. Calculate the production of a frame of two doffs in hanks and the speed of the front roller of $1 \frac{1}{8}$ " diameter:-
(When the required production of a m / c on its output package is complete, it is said to be one doff and the process of replacing these full packages with the empty ones to get further output is known as doffing)
Efficiency, $\quad \eta=80 \%=80 / 100=0.8$
Time to complete one doff $=3$. hr
Wt. of roving on full bobbin $=3 \mathrm{lb}+4 \mathrm{oz}$
$=3 \mathrm{lb}+4 / 16 \mathrm{lb}$
$=3.25 \mathrm{lb}$
Hank of roving $=1.0$
Dia. of Front Roller, D = $11 / 8 \quad "=1.125 "$
Production of a frame of two doffs, $\mathrm{P}_{2}=$?
Speed (rpm) of Front Roller, $\mathrm{N}=$?
Solution:-

$=6.5 \mathrm{lb}$
Production, P_{2} (Hk/ 2 doffs) = wt. of 2 doffs (lb) x Hk of roving
$=6.5 \times 1$
$=6.5 \mathrm{Hk}$ in $7 \mathrm{hr}-$--------Ans

Production, $\mathrm{P}(\mathrm{Hk} / \mathrm{hr})=6.5 / 7=0.93 \mathrm{Hk} / \mathrm{hr}$ On simplex we have,
P (Hk/hr) = DN x 60 x no. of spindles $\mathrm{x} \eta$
36840 roving Hk
$\mathrm{N}=\mathrm{P} \times 36 \times 840 \times 1 \mathrm{x} 1$
'D $60 \quad \eta \quad 1$
$=0.93 \times 36 \times 840 \times 1$.

1. $125 \quad 60 \quad 0.8$
$=165.4 \mathrm{rpm}-----$ Ans

7. Production of Ring frame

$\mathrm{P}=\pi \mathrm{DN} \times 60$ x $16 \times 8 \times \boldsymbol{\eta}[\mathrm{oz} /$ shift/spindle]
TPI x 36840 x ct.
$P=P[o z / s h i f t / s p i n d l e] x$ no. of spindles x no. of frames [oz/shift] DERIVATION
Let $D=$ dia. of front rollers (in inches)
$\mathrm{N}=$ rpm of front rollers
$\eta=$ efficiency of m / c
Production $=$ surface speed of front rollers x yarn ct. (wt/l) or,
= delivery speed of F. R. x yarn (oz/yard) [oz/hr]
Now let us calculate the delivery speed of F. R.
On a ring frame,
$\mathrm{TPI}=$ spindle speed (rpm)
F.R. delivery (in/min)
F.R. delivery $=$ spindle speed (rpm) [in/min] TPI
F. R. delivery $=$ sp. speed x 60 [yd/hr] TPI x 36

Now substituting this value in the production formula,
$\mathrm{P}[\mathrm{oz} / \mathrm{yd}]=\mathrm{sp}$. speed x $60[\mathrm{yd} / \mathrm{hr}] \mathrm{x}$ yarn ct. [oz/yd] TPI x 36
$=$ sp. speed x $60[y d / h r] x$ yarn ct. $[\mathrm{oz} / \mathrm{yd}] \times \eta[\mathrm{y} / \mathrm{yd}]$ TPI x 36
As 1 shift $=8 \mathrm{hr}$ and this is the calculation for a single spindle so,
$P[0 P S]=s p . ~ s p e e d x 60 x 8 \times$ yarn ct. [oz/yd] x $\eta[o z / s h i f t / s p i n d l e]$ TPI $x 36$
However, in some cases the English count is given instead of oz/yd of yarn.
For that purpose, let us make some changes in the above formula,
$=$ sp. speed $x 60 \times 8 \times \eta[1 b / s h i f t / s p i n d l e] T P I \times 36840 \times c t$.
$=$ sp. speed x $60 \times 8 \times 16 \times \eta[\mathrm{oz} /$ shift/spindle] TPI x $36840 \times \mathrm{ct}$.
Trai Rashik Bargia Sotra By M.H.Rana
www.matherana.synthasite.com
This formula helps to calculate the production of one spindle. For the production of a full ring frame, $P[o z / s h i f t]=P[o z / s h i f t / s p i n d l e] x$ no. of spindles [oz/shift] The no. of spindles in one ring frame is 480 . This is a fixed value and can be used when spindle capacity of the ring frame is not mentioned. Also, if the production of more than one ring frames is to be calculated, then $\mathrm{P}[\mathrm{oz} / \mathrm{shift}]=\mathrm{P}[\mathrm{oz} /$ shift/spindle] x 480 x no. of frames [oz/shift] As 1 day $=3$ shifts and 1 bag $=100 \mathrm{lb}$, $\mathrm{P}[\mathrm{bag} /$ day $]=\mathrm{P}[\mathrm{oz} /$ shift/spindle] x 480 x 3 x no. of [bag/day] 16 x 100 frames $=0.9 \times \mathrm{P}[\mathrm{oz} /$ shift/spindle] x no. of frames [bags/day]

Q:9-Calculate the production of yarn in oz/spindle/shift on a ring frame if the spindle speed is 16000 " $/ \mathrm{min}$, TM is 3.8 , yarn is $30 / 1$ and efficiency of the m / c is 93% :-
Yarn count $=30 / 1$
Efficiency $=93 \%=0.93$
No. of spindles $=480$
$\mathrm{TM}=3.8$
Solution:-
$\mathrm{TPI}=\mathrm{TM} \sqrt{ } \mathrm{ct}$.
$=3.8 \sqrt{ } 30$
$=20.78$
Now,
$\mathrm{P}[\mathrm{OPS}]=$ sp. speed $\times 60 \times 8 \times 16 \times \eta[\mathrm{oz} /$ shift/spindle]
TPI x 36840 x ct.
$=16000 \times 60 \times 8 \times 16 \times 0.93$ [oz/shift/spindle]
20. $78 \times 36840 \times 30$
$=6.06[\mathrm{oz} / \mathrm{shift} / \mathrm{spindle}]$
$\mathrm{P}[\mathrm{bag} / \mathrm{day}]=\mathrm{P}[\mathrm{oz} /$ shift/spindle] x 480 x 3 x no. of [bag/day]
16×100 frames
$=6.06 \times 480 \times 3 \times 1$ [bag/day]
16×100
$=5.45[\mathrm{bag} / \mathrm{day}]------$ Ans

[^0]: n... . . n^{2}

[^1]: Trai Rashik Bargia Sotra By M.H.Rana

[^2]: Trai Rashik Bargia Sotra By M.H.Rana

[^3]: Trai Rashik Bargia Sotra By M.H.Rana

