Textile Calculation

FIBER FINENESS, YARN COUNTS AND CONVERSIONS

Micronaire Value (Cotton):

The unit is micrograms per inch. The average weight of one inch length of fibre, expressed in micrograms(0.000001 gram).

Denier (Man-Made Fibres): Weight in grams per 9000 meters of fibre.

Micron (Wool): Fineness is expressed as fibre diameter in microns(0.001mm)

Conversions:

Denier = 0.354 x Micronaire value

Micronaire value = 2.824 x Denier

YARN COUNTS

It is broadly classified into;

INDIRECT SYSTEM

DIRECT SYSTEM

INDIRECT SYSTEM

English count (Ne)

French count(Nf)

Metric count(Nm)

Worsted count

<u>Metric system:</u> Metric count(Nm) indicates the number of 1 kilometer(1000 meter) lengths per Kg.

Nm = length in Km / weight in kg (or)

Nm = length meter / weight in gra

DIRECT SYSTEM

Tex count

Denier

CONVERSION TABLE FOR YARN COUNTS

Name	Тех	Den	Nm	Grains/yd
Тех		den/9	1000/Nm	gr.yd x 70.86
Ne	590.54/tex	5314.9/den	Nm x .5905	8.33 / gr/yd
Den	tex x 9		9000/Nm	gr/yd x 637.7
Nm	1000/tex	9000/den		14.1 / gr/yd
Grains/yd	tex / 70.86	den / 637.7	14.1/Nm	

Where, Nm – metric count, Nec – cotton count

CONVERSION TABLE FOR WEIGHTS

	Ounce	Grains	Grams	Kilograms	Pounds
Ounce		437.5 grains	28.350 grams		
Grains	0.03527 ounces		0.0648 grams		
Grams	0.03527 grains	15.432 grains		0.001 kgs	
Kilograms	35.274 ounces	15432 grains	1000 grams		2.2046 pounds
Pounds	16.0 ounces	7000 grains	453.59 grams	0.4536 kgs	

CONVERSION TABLE FOR LINEAR MEASURES

Yard	Feet	Inches	Centimeter	Meter

Textile Calculation

Yard		3 feet	36 inches	91.44 cms	0.9144 meter
Feet	0.3333 yards		12 inches	30.48 cms	0.3048 meter
Inches	0.0278 yards	0.0833 feet		2.54 cms	0.254 meter
Centimeter	0.0109 yards	0.0328 feet	0.3937 inches		0.01meter
Meter	1.0936 yards	3.281 feet	39.37 inches	100 cms	

CALCULATIONS

Grams per meter = 0.5905 / Ne

Grams per yard = 0.54 / Ne

Tex = den x .11 = 1000/Nm = Mic/25.4

Ne = Nm/1.693

DRAFT = (feed weight in g/m) / (delivery weight in g/m)

DRAFT = Tex (feed) / Tex(delivery)

DRAFT = delivery roll surface speed / feed roll surface speed

No of hanks delivered by m/c = (Length delivered in m/min) / 1.605

WINDING

1. Slub catcher settings :

a. Fixed Blade = Carded - (2.0 to 2.5) x diameter Combed - (1.5 to 2.0) x diameter

b. Electronic yarn clearer = 3 cm x 3 diameter

Diameter in inch for Blended yarn = 1/(28 x count)= 10 to 15% more settings

Number of objectionable thick faults removed by slub catcher

Textile Calculation

2.Yarn clearer efficiency=.....x 100 Total objectionable thick faults present in yarn before winding

Total breaks during winding (at faults)

3. Knot factor =..... No. of breaks due to objectionable yarn faults

Strength of spliced joint x 100

4. Retained splice strength = Strength of parent yarn

5. Winding Tension = 0.1 x Single yarn strength in grams

4500 x Y

6. Expected efficiency E =

S x N (12 + 98)

7. Winder's workload (0.17 min/operation on conventional winding m/c) = 2300 operations per shift of 8 hours

Where,

1 creeling or 1 piecing = 1 operation

1 doffing = 2 operations

8. Winder's workload on autoconer (0.08 min per operation) = 4800 operations/shift of 8 hours

Where,

1 bobbing feeding = 1 operation

1 doffing (manual) = 4.5 operation

Y = Length/Bobbin (metres)

B = Breaks per bobbin

S = Winding speed (metres/min)

C = English count

9. Production in Kgs / 8 Hrs = (0.2836 x L x Effy x Nd) / (Ne)

L - delivery speed in m/mi

Textile Calculation

- effy efficiency
- Ne english count
- Nd No of delvieries
- 10. P =(L x 1.0936 x 60 x Effy) / (Hank (Ne) x 36 x 840 x 2.2045)
- P production in kgs / hr
- L delivery speed in m/min
- effy- efficiency
- Ne English count (number of 840 yards in one pound)
- 840 constant
- 2.2045- to convert from lbs to kilograms

WARPING

R x 100

1. Machine Efficiency E =.... R + S

R = Uninterrupted running time for 1,000 meters (in sec)

1000 x 60

= Machine speed in mtr/min.

S = Total of time in seconds for which the machine is stopped for a production of 1,000 meters

Textile Calculation

By M.H.RANA

B X N X T1 T2 T3 = R + ------ + ----- + T4 400 L L x C

- B = Ends breaks/400 ends/1,000 meters
- N = Number of ends
- L = Set length in 1,000 meters
- C = Beams per creel
- Timing of activities in seconds are :
- T1 = To mend a break
- T2 = To change a beam
- T3 = To change a creel
- T4 = Miscellaneous Time loss/1,000 mtrs.
- 2. Production in metres per 8 hrs. (K) = 480 x mtrs/min x E/100 kgs.
- 3. Production in Kgs. per 8 hrs. = (K x N)/(1693 x English Count)
- 4. Warping Tension = 0.03 to 0.05 x Single thread strength

SIZING

Length in metre x 1.094 x Total ends 1. Warp weight (in kg.) =x 100 840 x 2.204 x Warp count Sized warp weight - Unsized warp weight 2. Size pick-up % =.....x 100 Un-sized warp weight 3. Weight of size = Warp Weight x Size pick up % Sized warp length - Unsized warp length 4. Stretch % =x 100

Textile Calculation

Un-sized warp length

Total-ends x Warp length in yards

5. Sized yarn count = Sized warp weight (lbs) x 840

Wt. of sized yarn - Wt. of oven dried yarn 6. % of Moisture content= x 100 Wt. of sized yarn

Deliver counter reading - Feed counter reading 7. % of Stretch =.....x 100

Feed counter reading

840,000 x D x C

8. % Droppings on loom = x 100 454 Y x N x P

D = Dropping in gms.

C = English Count Y = Length woven (yds.)

N = Number of Ends P = % size add on

9. Invisible Loss%

Amount of size material issued - Amount of size added on yarn

=x 100

Amount of size issued

Steam, Consumption (Sizing M/c) = 2.0 kg/kg of sized yarn (Cooker) = 0.3 kg/kg of liquor (Sow box) = 0.2 kg/kg of yarn

No. of Cylinder x 1,000 x English count

10. Max. Speed of machine =

Textile Calculation

(metres/min) Number of ends

Number of ends x 0.6

11. Wt. of warp in gms/mtr = English count

WEAVING

1. Reed Count : It is calculated in stock port system.

EPI Reed width = 1 + Weft crimp %age

No. of dents in 2 inches is called Reed Count

2. Reed Width :

	100 + Weft crimp %age
Reed width = Cloth wid	Ith x
	100

3. Crimp % :

Warp length - Cloth length Warp Crimp %age =.....x 100 Cloth length

Weft length - Cloth length Weft Crimp %age =x 100 Cloth length

EPI

4. Warp cover factor = Warp Count

PPI

5. Weft cover factor =..... Weft count

Wp.C.F. x Wt. C.F.

6. Cloth cover factor = Wp.C.F. + Wt.C.F. -

Textile Calculation

28

7. Maximum EPI for particular count :

a. For plain fabrics = 14 x Count

b. For drill fabrics = Count x 28 x 4/6

c. For satin fabric = Count x 28 x 5/7

Ends/repeat x 1 / yarn diameter

d. Other design = No. of intersections / repeat + ends/repeat

1 8. Yarn diameter = 28 x Count

Weave Density

1. Warp density = Ends/cm x Tex x K = < 250

2. Filling density = Picks/cm x Tex x K = < 350

(Warp density - 100) x F.D.- 100 3. Weave Density = 50 + (Weft density - 100) x F.D.- 100

4. Effective weave density = W.D. x K of loom width x K of Design = < 72

Textile Calculation

Wp/filling-K	Loom Width-K	Weave Design-K
Cotton = 1.00	140cm - 0.99	Plain1/1 = 1.00
PolyesterCotton = 1.03	180cm - 1.00	Twill 1/2 = 0.87
Viscose Filament = 1.17	190cm - 1.01	Matt, Gabardine 2/2=0.82
Polyester Filament = 1.22	220cm - 1.02	Dril 1/3 = 0.77
	250cm - 1.08	Satin 140.69
	330cm - 1.15	
	360cm - 1 20	

Count Table

To change the count and number of thread/inch, keeping the same denseness of the fabric :

1. To change the EPI without altering the denseness :

EPI in given cloth x Warp count in expected cloth

EPI in Exp.Cloth =....

Warp count in given cloth

2. To change the count without altering the denseness :

EPI in exp. cloth2 EPI in exp. cloth =x Count in given cloth EPI in given cloth

Warp requirement to weave a cloth :

Total ends x 1.0936 x 453.59 x crimp%

1. Warp weight in gms/mtrs. =.....x Wasteage%

840 x Count

2. Weft weight in gms/mtrs.

R.S. in inches x 453.59 x PPI

=....x Crimp % x Waste % 840 x Count

3. Cloth length in mtrs.with the given weft weight

Weft wt. in kgs. x Weft count x 1848 x 0.9144

=.....

PPI x R.S. in inches

For Silk and Polyester :

1. Warp weight in gms/mtrs.

Total ends x Count (Denier)

=x Crimp% x Waste %age 9000

2. Weft weight in gms/mtrs.

RS in inches x PPI x Count (Denier)

= x Crimp% x Wasteage% 9000

Allowance for count in Bleached and Dyed Fabric :

Count becomes 4%

Finer Dyed counts become max.6% Coarser

FABRIC PRODUCTION

Motor pulley diameter 1. Loom speed = Motor RPM x Loom pulley diameter

Actual production 2. Loom Efficiency % = ----- x 100 Calculated production

By M.H.RANA		Textile Calculation		
2 Maistura Dagain %	Yarn weight - Dryed yarn weight			
3. MOISTULE REGALL % =	= x 100 Dryed yarn weight			
4 Moisture Content %	dried yarn weight x 100			
	Yarn weight			
T 5. Warp weight in Kg =	otal ends x Ta	pe length in metre		
1693.6 x Warp count				
RS 6 Weft weight in Ka -	in centimetre	es x Coth length in metres x PPI		
0. Wert Weight in Kg. –	4301.14 x	Weft count		
7 Cloth weight in GSM	EPI -	PPI		
Wi	arp count	Weft count		
<u>GSM</u> (Grams per sq. metre) 8. Oz (Ounce) per sq.yard = 34				
Material measurement : For calculating of length of any rolled fabrics :				
0.0655 (D - d) (D + d	d)			
t t				
Where,				
L = Length of material (f	eet)			

t = Thickness of fabrics (inches) D = Outside diameter (inches) d = Inside diameter (inches)

Weight of yarn in a cloth :

The weight of cloth manufactured on loom depends upon the weight of yarns in the warp and weft : ends/inch, picks/inch and the weight of size on the warp.

Textile Calculation

Therefore, Cloth weight = Weight of warp + Weight of weft + Weight of size (All in lbs.)

Also Weight of weft in lbs.

Length of cloth (yds) x Picks/inch in cloth x Reed width (inch)

= -----

840 x Weft yarn count

SLIVER TO FABRICS:

This is from drawing sliver direct feed to the knitting machine with 24 x 4 ~96 in 4 x D shape Surrounding of knitting machine this will not use any simplex, Ring frame and autoconer.

process flow chart as will blow room >> carding >> breaker drawing >> finisher drawing >> then knitting output will knit fabrics.

so spinning cost will reduce 50%

here is knitting space will more required then previous.

Research and develop By M.H. Rana, PGD in CIT(JU), MBA in Textile(PAU). Consultant: Aftab Group and Nannu Spinning Mills Ltd. Lect: PISFT, www.matherana.synthasite.com

Textile Calculation

Spinning layout with mcs

